# NOT RUN {
##PEM
##GTE Data
data(gte_data)
Ytm = gte_data$V1
Event = gte_data$V2
Breakm = NGSSEML:::GridP(Ytm, Event, nT = NULL)
Xtm = NULL
Ztm = NULL
model = "PEM"
amp = FALSE
LabelParTheta = c("w")
StaPar = c(0.73)
p = length(StaPar)
nn = length(Breakm)
a0 = 0.01
b0 = 0.1
p=length(StaPar)
pointss = 4 ### points
nsamplex = 50 ## Multinomial sampling posterior
ci = 0.95
alpha = 1-ci
#Bayesian fit:
fitbayes = ngssm.bayes(Ytm~Event, data = data.frame(Ytm, Event), model = model,
pz = NULL, StaPar = StaPar, amp = amp, a0 = a0, b0 = b0, prw = c(1,1),
prnu = NULL, prchi = NULL, prmu = NULL, prbetamu = NULL, prbetasigma = NULL,
ci = ci, pointss = pointss, nsamplex = nsamplex, postplot = FALSE,
contourplot = FALSE, LabelParTheta = LabelParTheta, verbose = TRUE)
posts = fitbayes$samplepost
#Smoothing
set.seed(1000)
fits = SmoothingF(Ytm~Event, data = data.frame(Ytm, Event), model = model,
pz = NULL, StaPar = posts, Type = "Marg", a0 = a0, b0 = b0, ci = ci,
samples = 1, splot = FALSE)
###############################################################################
# }
Run the code above in your browser using DataLab