Learn R Programming

NHMSAR (version 1.0)

Mstep.nh.MSAR: M step of the EM algorithm.

Description

M step of the EM algorithm for fitting Markov switching auto-regressive models with non homogeneous transitions.

Usage

Mstep.nh.MSAR(data, theta, FB, covar = NULL, method = method,ARfix=FALSE)

Arguments

data
array of univariate or multivariate series with dimension T*N.samples*d. T: number of time steps of each sample, N.samples: number of realisations of the same stationary process, d: dimension.
theta
model's parameter; object of class MSAR. See also init.theta.MSAR.
FB
Forward-Backward results, obtained by calling Estep.MSAR function
covar
transitions covariates
method
permits to choice the optimization algorithm. default is "ucminf", other possible choices are "BFGS" or "L-BFGS-B"
ARfix
if TRUE the AR parameters are not estimated, they stay fixed at their initial value.

Value

  • List containing
  • ..$A0intercepts
  • ..$AAR coefficients
  • ..$sigmavariance of innovation
  • ..$priorprior probabilities
  • ..$transmattransition matrix
  • ..$par.transtransitions parameters

References

Ailliot P., Monbet V., (2012), Markov switching autoregressive models for wind time series. Environmental Modelling & Software, 30, pp 92-101.

See Also

fit.MSAR, init.theta.MSAR, Mstep.hh.MSAR