Learn R Programming

NHMSAR (version 1.0)

init.theta.MSAR.VM: Initialisation function for von Mises MSAR model fitting

Description

Initialization before fitting von Mises (non) homogeneous Markov switching autoregressive models by EM algorithm. Non homogeneity may be introduce in the probability transitions. The link function is defined here.

Usage

init.theta.MSAR.VM(data, ..., M, order, 
                  regime_names = NULL, 
                  nh.emissions = NULL, nh.transitions = NULL, 
                  label = NULL, ncov.emis = 0, ncov.trans = 0)

Arguments

data
array of univariate or multivariate series with dimension T*N.samples*d with T: number of time steps of each sample, N.samples: number of realisations of the same stationary process, d: dimension
M
number of regimes
order
order of AR processes
label
"HH" (default) for homogeneous MS AR model "NH" for non homogeneous transitions
regime_names
(optional) regime's names may be chosen
nh.emissions
not available - under development.
nh.transitions
link function for non homogeneous transitions. Default: von Mises (see details).
ncov.emis
not available - under development.
ncov.trans
number of covariates in NH model
...

Value

  • return a list of class MSAR including
  • thetaparameter
  • ..$transmattransition matrix
  • ..$priorprior probabilities
  • ..$muvector of intercepts
  • ..$kappamatrix of 'AR' coefficients (not complex by default)
  • ..$par.emisparameters of non homogeneous emissions (not used)
  • ..$par.transparameters of non homogeneous transitions
  • labelmodel's label

Details

The model with non homogeneous transitions is labeled "NH" and it is written $$P(X_t|X_{t-1}=x_{t-1}) = q(z_t,\theta_{z_t})$$ with $X_t$ the hidden process and $q$ von Mises link function such that $$p_1(x_t|x_{t-1},z_{t}) =\frac{ q_{x_{t-1},x_t}\left|\exp \left(\tilde\lambda_{x_{t-1},x_t} e^{-iz_{t}} \right)\right|} {\sum_{x'=1}^M q_{x_{t-1},x'}\left|\exp \left(\tilde\lambda_{x_{t-1},x'} e^{-iz_{t}} \right)\right|},$$ with $\tilde\lambda_{x,x'}$ a complex parameter (by taking $\tilde\lambda_{x,x'}=\lambda_{x,x'} e^{i\psi_{x,x'}}$).

References

Ailliot P., Bessac J., Monbet V., Pene F., (2014) Non-homogeneous hidden Markov-switching models for wind time series. JSPI.

See Also

fit.MSAR.VM