data(lynx)
T = length(lynx)
data = array(log(lynx),c(T,1,1))
theta.init = init.theta.MSAR(data,M=2,order=2,label="HH")
mod.lynx = fit.MSAR(data,theta.init)
regimes.plot.MSAR(mod.lynx,data,ylab="Captures number")
theta.init = init.theta.MSAR(data,M=2,order=2,label="NH",nh.transitions="logistic")
attributes(theta.init)
theta.init$A0 = mod.lynx$theta$A0
theta.init$A = mod.lynx$theta$A
theta.init$sigma = mod.lynx$theta$sigma
theta.init$prior = mod.lynx$theta$prior
theta.init$transmat = mod.lynx$theta$transmat
theta.init$par.trans = matrix(c(1,-1,-.2,.2),2,2)
Y = array(data[2:T,,],c(T-1,1,1))
Z = array(data[2:T,,],c(T-1,1,1))
mod.lynx = fit.MSAR(Y,theta.init,verbose=TRUE,MaxIter=20,covar.trans=Z)
regimes.plot.MSAR(mod.lynx,data,ylab="Captures number")
## Not run
# Fit Homogeneous MS-AR models - multivariate time series
#data(PibDetteDemoc)
#T = length(unique(PibDetteDemoc$year))-1
#N.samples = length(unique(PibDetteDemoc$country))
#PIB = matrix(PibDetteDemoc$PIB,N.samples,T+1)
#Dette = matrix(PibDetteDemoc$Dette,N.samples,T+1)
#Democratie = matrix(PibDetteDemoc$Democratie,N.samples,T+1)
#d = 2
#Y = array(0,c(T,N.samples,2))
#for (k in 1:N.samples) {
# Y[,k,1] = diff(log(PIB[k,]))
# Y[,k,2] = diff(log(Dette[k,]))
#}
#Democ = Democratie[,2:(T+1)]
#theta.hh.1 = init.theta.MSAR(Y,M=4,order=1,label="HH")
#res.hh = fit.MSAR(Y,theta.hh.1,verbose=TRUE,MaxIter=200)
#par(mfrow=c(2,1))
#regimes.plot.MSAR(res.hh,Y,ex=30,ylab="GDP")
#regimes.plot.MSAR(res.hh,Y,ex=30,nc=2,ylab="Debt")Run the code above in your browser using DataLab