Learn R Programming

NHMSAR (version 1.1)

Estep.MSAR.VM: Estep of the EM algorithm for fitting von Mises (non) homogeneous Markov switching auto-regressive models.

Description

Forward-backward algorithm called in fit.MSAR.

Usage

Estep.MSAR.VM(data, theta, smth = FALSE, verbose = FALSE, 
   covar.emis = NULL, covar.trans = NULL)

Arguments

data
array of univariate or multivariate series with dimension T*N.samples*d. T: number of time steps of each sample, N.samples: number of realisations of the same stationary process, d: dimension.
theta
model's parameter; object of class MSAR. See also init.theta.MSAR.
smth
If smth=FALSE, only the forward step is computed for forecasting probabilities. If smth=TRUE, the smoothing probabilities are computed too.
verbose
covar.emis
covariables for emission probabilities.
covar.trans
covariables for transition probabilities

Value

  • list including
  • logliklog likelihood
  • probSsmoothing probabilities: $P(S_t=s|y_0,\cdots,y_T)$
  • probSSone step smoothing probabilities: $P(S_t=s,S_{t+1}|y_0,\cdots,y_T)$

References

Ailliot P., Bessac J., Monbet V., Pene F., (2014) Non-homogeneous hidden Markov-switching models for wind time series. JSPI.

See Also

fit.MSAR.VM, Mstep.hh.MSAR.VM,Estep.MSAR