Learn R Programming

NHMSAR (version 1.4)

prediction.MSAR:

Description

computes one step ahead predict for (non) homogeneous MSAR models. A time series is given as input and a prediction is return for each time. These function is mainly usefull for cross-validation.

Usage

prediction.MSAR(data, theta, covar.emis = NULL, covar.trans = NULL, ex = 1)

Arguments

data
observed time series, array of dimension T*N.samples*d
theta
object of class MSAR including the model's parameter
covar.emis
covariate for emissions (if needed)
covar.trans
covariate for transitions (if needed)
ex
numbers of samples for which prediction has to be computed

Value

Returns a list with the following elements:
y.p
the one step ahead prediction for each time of data time series
pr
the prediction probabilities for each regime

See Also

Cond.prob.MSAR

Examples

Run this code
## Not run
#data(meteo.data)
#data = array(meteo.data$temperature,c(31,41,1)) 
#T = dim(data)[1]
#N.samples = dim(data)[2]
#d = dim(data)[3]
#M = 2
#theta.init = init.theta.MSAR(data,M=M,order=2,label="HH")
#res.hh.2 = fit.MSAR(data,theta.init,verbose=TRUE,MaxIter=200)
#y.p.2 = prediction.MSAR(data,res.hh.2$theta,ex=1:N.samples)
#RMSE.2 = mean((data-y.p.2)^2)

Run the code above in your browser using DataLab