data(heartfailure)
hf2 <- setup(study=study,trt=trt,d=d,n=n,measure="OR",ref="Placebo",data=heartfailure)
hf3 <- setup(study=study,trt=trt,d=d,n=n,measure="RR",ref="Placebo",data=heartfailure)
hf4 <- setup(study=study,trt=trt,d=d,n=n,measure="RD",ref="Placebo",data=heartfailure)
hf5 <- setup(study=study,trt=trt,d=d,n=n,z=c(SBP,DBP,pubyear),measure="OR",
ref="Placebo",data=heartfailure)
data(antidiabetic)
ad2 <- setup(study=id,trt=t,m=y,s=sd,n=n,measure="MD",ref="Placebo",data=antidiabetic)
ad3 <- setup(study=id,trt=t,m=y,s=sd,n=n,measure="SMD",ref="Placebo",data=antidiabetic)
data(woods1)
data(woods2)
woods3 <- trans.armdata(study=studlab,treat1=treat1,treat2=treat2,n1=n1,n2=n2,
y=TE,SE=seTE,measure="logHR",data=woods1)
# Creating pseudo-dichotomized data that is equivalent to the hazard ratio data.
# Using the setup function, the hazard ratio estimates are reproduced.
woods4 <- rbind(woods2,woods3)
# If some studies did not report hazard ratio estimates and only reported event numbers,
# the survival and dichotomized outcomes can be combined using this method.
wd4 <- setup(study=study,trt=trt,d=d,n=n,measure="HR",ref="Placebo",data=woods4)
data(exdataP)
woods5 <- trans.armdataP(study=study,treat=trt,y=y,SE=se,data=exdataP)
wd5 <- setup(study=study,trt=trt,d=d,n=n,measure="SPD",ref="Placebo",data=woods5)
Run the code above in your browser using DataLab