Learn R Programming

⚠️There's a newer version (11.4.1) of this package.Take me there.

NNS

Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences.

NNS offers:

  • Numerical Integration & Numerical Differentiation
  • Partitional & Hierarchial Clustering
  • Nonlinear Correlation & Dependence
  • Causal Analysis
  • Nonlinear Regression & Classification
  • ANOVA
  • Seasonality & Autoregressive Modeling
  • Normalization
  • Stochastic Dominance
  • Advanced Monte Carlo Sampling

Companion R-package and datasets to:

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"

Current Version

is built on and architecture and is built on with notable performance enhancements.

*Current CRAN version is

Installation

requires . See https://cran.r-project.org/ or for upgrading to latest R release.

require(devtools); install_github('OVVO-Financial/NNS', ref = "NNS-Beta-Version")

or via CRAN

install.packages('NNS')

Examples

Please see https://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/index.md for basic partial moments equivalences and hands-on statistics, machine learning and econometrics examples.

Citation

@Manual{,
    title = {NNS: Nonlinear Nonparametric Statistics},
    author = {Fred Viole},
    year = {2016},
    note = {R package version 0.9.7},
    url = {https://CRAN.R-project.org/package=NNS},
  }

Thank you for your interest in NNS!

Copy Link

Version

Install

install.packages('NNS')

Monthly Downloads

1,260

Version

0.9.7

License

GPL-3

Maintainer

Fred Viole

Last Published

April 11th, 2023

Functions in NNS (0.9.7)

NNS.FSD.uni

NNS FSD Test uni-directional
NNS.FSD

NNS FSD Test
NNS.CDF

NNS CDF
NNS.dep

NNS Dependence
NNS.diff

NNS Numerical Differentiation
NNS.SD.efficient.set

NNS SD Efficient Set
NNS.PDF

NNS PDF
NNS.TSD.uni

NNS TSD Test uni-directional
NNS.VAR

NNS VAR
NNS.TSD

NNS TSD Test
LPM.VaR

LPM VaR
NNS.MC

NNS Monte Carlo Sampling
NNS.meboot

NNS meboot
NNS.mode

NNS mode
NNS.nowcast

NNS Nowcast
NNS.gravity

NNS gravity
NNS.distance

NNS Distance
NNS.norm

NNS Normalization
NNS.boost

NNS Boost
NNS.moments

NNS moments
NNS_bin

Fast binning of numeric vector into equidistant bins
dy.d_

Partial Derivative dy/d_[wrt]
UPM.ratio

Upper Partial Moment RATIO
PM.matrix

Partial Moment Matrix
NNS.seas

NNS Seasonality Test
NNS.reg

NNS Regression
dy.dx

Partial Derivative dy/dx
NNS.part

NNS Partition Map
NNS.term.matrix

NNS Term Matrix
NNS.stack

NNS Stack
NNS.caus

NNS Causation
UPM.VaR

UPM VaR
NNS.SSD.uni

NNS SSD Test uni-directional
NNS.copula

NNS Co-Partial Moments Higher Dimension Dependence
NNS.SSD

NNS SSD Test
UPM

Upper Partial Moment
Co.LPM

Co-Lower Partial Moment (Lower Left Quadrant 4)
NNS.ARMA

NNS ARMA
Co.UPM

Co-Upper Partial Moment (Upper Right Quadrant 1)
LPM.ratio

Lower Partial Moment RATIO
D.UPM

Divergent-Upper Partial Moment (Upper Left Quadrant 2)
NNS.ANOVA

NNS ANOVA
NNS.ARMA.optim

NNS ARMA Optimizer
D.LPM

Divergent-Lower Partial Moment (Lower Right Quadrant 3)
LPM

Lower Partial Moment