Learn R Programming

⚠️There's a newer version (11.4.1) of this package.Take me there.

NNS

Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences.

NNS offers:

  • Numerical Integration & Numerical Differentiation
  • Partitional & Hierarchial Clustering
  • Nonlinear Correlation & Dependence
  • Causal Analysis
  • Nonlinear Regression & Classification
  • ANOVA
  • Seasonality & Autoregressive Modeling
  • Normalization
  • Stochastic Dominance
  • Advanced Monte Carlo Sampling

Companion R-package and datasets to:

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"

Current Version

is built on and architecture and is built on with notable performance enhancements.

*Current CRAN version is

Installation

requires . See https://cran.r-project.org/ or for upgrading to latest R release.

require(devtools); install_github('OVVO-Financial/NNS', ref = "NNS-Beta-Version")

or via CRAN

install.packages('NNS')

Examples

Please see https://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/index.md for basic partial moments equivalences and hands-on statistics, machine learning and econometrics examples.

Citation

@Manual{,
    title = {NNS: Nonlinear Nonparametric Statistics},
    author = {Fred Viole},
    year = {2016},
    note = {R package version 0.9.9.1},
    url = {https://CRAN.R-project.org/package=NNS},
  }

Thank you for your interest in NNS!

Copy Link

Version

Install

install.packages('NNS')

Monthly Downloads

1,260

Version

0.9.9.1

License

GPL-3

Maintainer

Fred Viole

Last Published

June 15th, 2023

Functions in NNS (0.9.9.1)

NNS.caus

NNS Causation
NNS.copula

NNS Co-Partial Moments Higher Dimension Dependence
NNS.mode

NNS mode
NNS.meboot

NNS meboot
NNS.gravity

NNS gravity
NNS.distance

NNS Distance
NNS.TSD.uni

NNS TSD Test uni-directional
NNS.diff

NNS Numerical Differentiation
NNS.dep

NNS Dependence
NNS.norm

NNS Normalization
NNS.moments

NNS moments
NNS.boost

NNS Boost
NNS.VAR

NNS VAR
NNS.stack

NNS Stack
NNS.seas

NNS Seasonality Test
NNS.reg

NNS Regression
NNS.rescale

NNS rescale
dy.dx

Partial Derivative dy/dx
dy.d_

Partial Derivative dy/d_[wrt]
NNS_bin

Fast binning of numeric vector into equidistant bins
NNS.term.matrix

NNS Term Matrix
UPM.ratio

Upper Partial Moment RATIO
NNS.nowcast

NNS Nowcast
NNS.part

NNS Partition Map
UPM.VaR

UPM VaR
UPM

Upper Partial Moment
PM.matrix

Partial Moment Matrix
Co.UPM

Co-Upper Partial Moment (Upper Right Quadrant 1)
NNS.ANOVA

NNS ANOVA
NNS.ARMA

NNS ARMA
LPM

Lower Partial Moment
LPM.VaR

LPM VaR
LPM.ratio

Lower Partial Moment RATIO
Co.LPM

Co-Lower Partial Moment (Lower Left Quadrant 4)
NNS.ARMA.optim

NNS ARMA Optimizer
D.UPM

Divergent-Upper Partial Moment (Upper Left Quadrant 2)
D.LPM

Divergent-Lower Partial Moment (Lower Right Quadrant 3)
NNS.SSD.uni

NNS SSD Test uni-directional
NNS.PDF

NNS PDF
NNS.MC

NNS Monte Carlo Sampling
NNS.FSD.uni

NNS FSD Test uni-directional
NNS.TSD

NNS TSD Test
NNS.SSD

NNS SSD Test
NNS.SD.efficient.set

NNS SD Efficient Set
NNS.CDF

NNS CDF
NNS.FSD

NNS FSD Test