Learn R Programming

⚠️There's a newer version (11.4.1) of this package.Take me there.

NNS

Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences.

NNS offers:

  • Numerical Integration & Numerical Differentiation
  • Partitional & Hierarchial Clustering
  • Nonlinear Correlation & Dependence
  • Causal Analysis
  • Nonlinear Regression & Classification
  • ANOVA
  • Seasonality & Autoregressive Modeling
  • Normalization
  • Stochastic Dominance
  • Advanced Monte Carlo Sampling

Companion R-package and datasets to:

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments"

For a quantitative finance implementation of NNS, see OVVO Labs

Current Version

Current CRAN version is

Installation

requires . See https://cran.r-project.org/ or for upgrading to latest R release.

library(remotes); remotes::install_github('OVVO-Financial/NNS', ref = "NNS-Beta-Version")

or via CRAN

install.packages('NNS')

Examples

Please see https://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/index.md for basic partial moments equivalences and hands-on statistics, machine learning and econometrics examples.

Citation

@Manual{,
    title = {NNS: Nonlinear Nonparametric Statistics},
    author = {Fred Viole},
    year = {2016},
    note = {R package version 10.9},
    url = {https://CRAN.R-project.org/package=NNS},
  }

Thank you for your interest in NNS!

Copy Link

Version

Install

install.packages('NNS')

Monthly Downloads

1,260

Version

10.9

License

GPL-3

Maintainer

Fred Viole

Last Published

August 19th, 2024

Functions in NNS (10.9)

NNS.CDF

NNS CDF
NNS.copula

NNS Co-Partial Moments Higher Dimension Dependence
NNS.caus

NNS Causation
NNS.distance

NNS Distance
NNS.diff

NNS Numerical Differentiation
NNS.gravity

NNS gravity
NNS.meboot

NNS meboot
NNS.dep

NNS Dependence
NNS.mode

NNS mode
NNS.VAR

NNS VAR
NNS.boost

NNS Boost
NNS.term.matrix

NNS Term Matrix
NNS.part

NNS Partition Map
NNS.nowcast

NNS Nowcast
NNS_bin

Fast binning of numeric vector into equidistant bins
NNS.stack

NNS Stack
NNS.norm

NNS Normalization
NNS.seas

NNS Seasonality Test
NNS.moments

NNS moments
NNS.reg

NNS Regression
NNS.rescale

NNS rescale
dy.d_

Partial Derivative dy/d_[wrt]
UPM.ratio

Upper Partial Moment RATIO
UPM

Upper Partial Moment
PM.matrix

Partial Moment Matrix
UPM.VaR

UPM VaR
dy.dx

Partial Derivative dy/dx
LPM.VaR

LPM VaR
NNS.ANOVA

NNS ANOVA
LPM.ratio

Lower Partial Moment RATIO
NNS.ARMA.optim

NNS ARMA Optimizer
LPM

Lower Partial Moment
Co.LPM

Co-Lower Partial Moment (Lower Left Quadrant 4)
D.LPM

Divergent-Lower Partial Moment (Lower Right Quadrant 3)
NNS.ARMA

NNS ARMA
Co.UPM

Co-Upper Partial Moment (Upper Right Quadrant 1)
D.UPM

Divergent-Upper Partial Moment (Upper Left Quadrant 2)
NNS.TSD

NNS TSD Test
NNS.TSD.uni

NNS TSD Test uni-directional
NNS.SSD

NNS SSD Test
NNS.SSD.uni

NNS SSD Test uni-directional
NNS

NNS: Nonlinear Nonparametric Statistics
NNS.FSD.uni

NNS FSD Test uni-directional
NNS.MC

NNS Monte Carlo Sampling
NNS.FSD

NNS FSD Test
NNS.SD.efficient.set

NNS SD Efficient Set