Learn R Programming

NNS

Nonlinear nonparametric statistics using partial moments. Partial moments are the elements of variance and asymptotically approximate the area of f(x). These robust statistics provide the basis for nonlinear analysis while retaining linear equivalences.

NNS offers:

  • Numerical Integration & Numerical Differentiation
  • Partitional & Hierarchial Clustering
  • Nonlinear Correlation & Dependence
  • Causal Analysis
  • Nonlinear Regression & Classification
  • ANOVA
  • Seasonality & Autoregressive Modeling
  • Normalization
  • Stochastic Dominance
  • Advanced Monte Carlo Sampling

Companion R-package and datasets to:

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)

For a quantitative finance implementation of NNS, see OVVO Labs

Current Version

Current CRAN version is

Installation

requires . See https://cran.r-project.org/ or for upgrading to latest R release.

library(remotes); remotes::install_github('OVVO-Financial/NNS', ref = "NNS-Beta-Version")

or via CRAN

install.packages('NNS')

Examples

Please see https://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/index.md for basic partial moments equivalences, hands-on statistics, machine learning and econometrics examples.

Citation

@Manual{,
    title = {NNS: Nonlinear Nonparametric Statistics},
    author = {Fred Viole},
    year = {2016},
    note = {R package version 11.4},
    url = {https://CRAN.R-project.org/package=NNS},
  }

Thank you for your interest in NNS!

Copy Link

Version

Install

install.packages('NNS')

Monthly Downloads

1,260

Version

11.4

License

GPL-3

Maintainer

Fred Viole

Last Published

July 8th, 2025

Functions in NNS (11.4)

NNS.SSD.uni

NNS SSD Test uni-directional
NNS.CDF

NNS CDF
NNS

NNS: Nonlinear Nonparametric Statistics
NNS.TSD

NNS TSD Test
NNS.MC

NNS Monte Carlo Sampling
NNS.SD.efficient.set

NNS SD Efficient Set
NNS.SSD

NNS SSD Test
NNS.SD.cluster

NNS SD-based Clustering
NNS.distance

NNS Distance
NNS.diff

NNS Numerical Differentiation
NNS.boost

NNS Boost
NNS.caus

NNS Causation
NNS.meboot

NNS meboot
NNS.norm

NNS Normalization
NNS.gravity

NNS gravity
NNS.moments

NNS moments
NNS.mode

NNS mode
NNS.FSD

NNS FSD Test
NNS.term.matrix

NNS Term Matrix
NNS.dep

NNS Dependence
NNS.copula

NNS Co-Partial Moments Higher Dimension Dependence
NNS.stack

NNS Stack
NNS.nowcast

NNS Nowcast
dy.dx

Partial Derivative dy/dx
dy.d_

Partial Derivative dy/d_[wrt]
NNS.rescale

NNS rescale
NNS.seas

NNS Seasonality Test
UPM

Upper Partial Moment
PM.matrix

Partial Moment Matrix
NNS.VAR

NNS VAR
NNS.TSD.uni

NNS TSD Test uni-directional
NNS.part

NNS Partition Map
NNS.reg

NNS Regression
UPM.VaR

UPM VaR
UPM.ratio

Upper Partial Moment RATIO
LPM

Lower Partial Moment
NNS.ANOVA

NNS ANOVA
LPM.ratio

Lower Partial Moment RATIO
LPM.VaR

LPM VaR
NNS.ARMA.optim

NNS ARMA Optimizer
NNS.ARMA

NNS ARMA
NNS.FSD.uni

NNS FSD Test uni-directional
D.UPM

Divergent-Upper Partial Moment (Upper Left Quadrant 2)
D.LPM

Divergent-Lower Partial Moment (Lower Right Quadrant 3)
Co.UPM

Co-Upper Partial Moment (Upper Right Quadrant 1)
Co.LPM

Co-Lower Partial Moment (Lower Left Quadrant 4)