Learn R Programming

NNS

NNS (Nonlinear Nonparametric Statistics) leverages partial moments – the fundamental elements of variance that asymptotically approximate the area under f(x) – to provide a robust foundation for nonlinear analysis while maintaining linear equivalences.

NNS delivers a comprehensive suite of advanced statistical techniques, including:

  • Numerical Integration & Numerical Differentiation
  • Partitional & Hierarchial Clustering
  • Nonlinear Correlation & Dependence
  • Causal Analysis
  • Nonlinear Regression & Classification
  • ANOVA
  • Seasonality & Autoregressive Modeling
  • Normalization
  • Stochastic Dominance
  • Advanced Monte Carlo Sampling

Companion R-package and datasets to:

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)

For a quantitative finance implementation of NNS, see OVVO Labs

Current Version

Current CRAN version is

Installation

requires . See https://cran.r-project.org/ or for upgrading to latest R release.

library(remotes); remotes::install_github('OVVO-Financial/NNS', ref = "NNS-Beta-Version")

or via CRAN

install.packages('NNS')

Examples

Please see https://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/index.md for basic partial moments equivalences, hands-on statistics, machine learning and econometrics examples.

Citation

@Manual{,
    title = {NNS: Nonlinear Nonparametric Statistics},
    author = {Fred Viole},
    year = {2016},
    note = {R package version 11.4.1},
    url = {https://CRAN.R-project.org/package=NNS},
  }

Thank you for your interest in NNS!

Copy Link

Version

Install

install.packages('NNS')

Monthly Downloads

1,260

Version

11.4.1

License

GPL-3

Maintainer

Fred Viole

Last Published

July 15th, 2025

Functions in NNS (11.4.1)

NNS.MC

NNS Monte Carlo Sampling
NNS.SSD

NNS SSD Test
NNS.SD.cluster

NNS SD-based Clustering
NNS.SD.efficient.set

NNS SD Efficient Set
NNS.SSD.uni

NNS SSD Test uni-directional
NNS.FSD

NNS FSD Test
NNS.TSD.uni

NNS TSD Test uni-directional
NNS.diff

NNS Numerical Differentiation
NNS.distance

NNS Distance
NNS.copula

NNS Co-Partial Moments Higher Dimension Dependence
NNS.dep

NNS Dependence
NNS.gravity

NNS gravity
NNS.meboot

NNS meboot
NNS.stack

NNS Stack
NNS.term.matrix

NNS Term Matrix
NNS.caus

NNS Causation
NNS.reg

NNS Regression
UPM.ratio

Upper Partial Moment RATIO
NNS.norm

NNS Normalization
NNS.VAR

NNS VAR
NNS.mode

NNS mode
NNS.moments

NNS moments
NNS.nowcast

NNS Nowcast
dy.dx

Partial Derivative dy/dx
NNS.rescale

NNS rescale
dy.d_

Partial Derivative dy/d_[wrt]
NNS.seas

NNS Seasonality Test
PM.matrix

Partial Moment Matrix
NNS.boost

NNS Boost
UPM.VaR

UPM VaR
NNS.part

NNS Partition Map
UPM

Upper Partial Moment
LPM

Lower Partial Moment
D.UPM

Divergent-Upper Partial Moment (Upper Left Quadrant 2)
NNS.ARMA.optim

NNS ARMA Optimizer
NNS.ARMA

NNS ARMA
LPM.ratio

Lower Partial Moment RATIO
LPM.VaR

LPM VaR
D.LPM

Divergent-Lower Partial Moment (Lower Right Quadrant 3)
Co.LPM

Co-Lower Partial Moment (Lower Left Quadrant 4)
Co.UPM

Co-Upper Partial Moment (Upper Right Quadrant 1)
NNS.ANOVA

NNS ANOVA
NNS.TSD

NNS TSD Test
NNS.CDF

NNS CDF
NNS

NNS: Nonlinear Nonparametric Statistics
NNS.FSD.uni

NNS FSD Test uni-directional