Learn R Programming

⚠️There's a newer version (11.6.2) of this package.Take me there.

NNS

NNS (Nonlinear Nonparametric Statistics) leverages partial moments – the fundamental elements of variance that asymptotically approximate the area under f(x) – to provide a robust foundation for nonlinear analysis while maintaining linear equivalences.

NNS delivers a comprehensive suite of advanced statistical techniques, including:

  • Numerical Integration & Numerical Differentiation
  • Partitional & Hierarchial Clustering
  • Nonlinear Correlation & Dependence
  • Causal Analysis
  • Nonlinear Regression & Classification
  • ANOVA
  • Seasonality & Autoregressive Modeling
  • Normalization
  • Stochastic Dominance
  • Advanced Monte Carlo Sampling

Companion R-package and datasets to:

Viole, F. and Nawrocki, D. (2013) "Nonlinear Nonparametric Statistics: Using Partial Moments" (ISBN: 1490523995)

For a quantitative finance implementation of NNS, see OVVO Labs

Current Version

Current CRAN version is

Installation

requires . See https://cran.r-project.org/ or for upgrading to latest R release.

library(remotes); remotes::install_github('OVVO-Financial/NNS', ref = "NNS-Beta-Version")

or via CRAN

install.packages('NNS')

Examples

Please see https://github.com/OVVO-Financial/NNS/blob/NNS-Beta-Version/examples/index.md for basic partial moments equivalences, hands-on statistics, machine learning and econometrics examples.

Citation

@Manual{,
    title = {NNS: Nonlinear Nonparametric Statistics},
    author = {Fred Viole},
    year = {2016},
    note = {R package version 11.6},
    url = {https://CRAN.R-project.org/package=NNS},
  }

Thank you for your interest in NNS!

Copy Link

Version

Install

install.packages('NNS')

Monthly Downloads

1,683

Version

11.6

License

GPL-3

Maintainer

Fred Viole

Last Published

September 26th, 2025

Functions in NNS (11.6)

NNS.TSD

NNS TSD Test
NNS.boost

NNS Boost
NNS.VAR

NNS VAR
NNS.TSD.uni

NNS TSD Test uni-directional
NNS.caus

NNS Causation
NNS.SSD.uni

NNS SSD Test uni-directional
NNS.SSD

NNS SSD Test
NNS.dep

NNS Dependence
NNS.diff

NNS Numerical Differentiation
NNS.copula

NNS Co-Partial Moments Higher Dimension Dependence
NNS.norm

NNS Normalization
NNS.gravity

NNS gravity
NNS.distance

NNS Distance
NNS.mode

NNS mode
NNS.moments

NNS moments
NNS.meboot

NNS meboot
NNS.part

NNS Partition Map
NNS.nowcast

NNS Nowcast
NNS.reg

NNS Regression
NNS.rescale

NNS rescale
UPM.ratio

Upper Partial Moment Ratio
UPM.VaR

UPM VaR
NNS.term.matrix

NNS Term Matrix
NNS.stack

NNS Stack
PM.matrix

Partial Moment Matrix
dy.dx

Partial Derivative dy/dx
NNS.seas

NNS Seasonality Test
UPM

Upper Partial Moment
dy.d_

Partial Derivative dy/d_[wrt]
D.LPM

Divergent‑Lower Partial Moment
LPM.VaR

LPM VaR
Co.UPM_nD

Co‑Upper Partial Moment nD
LPM

Lower Partial Moment
DPM_nD

Divergent Partial Moment nD
Co.LPM

Co‑Lower Partial Moment
Co.UPM

Co‑Upper Partial Moment
D.UPM

Divergent‑Upper Partial Moment
LPM.ratio

Lower Partial Moment Ratio
Co.LPM_nD

Co‑Lower Partial Moment nD
NNS.SD.cluster

NNS SD-based Clustering
NNS.ANOVA

NNS ANOVA: Nonparametric Analysis of Variance
NNS.SD.efficient.set

NNS SD Efficient Set
NNS.ARMA.optim

NNS ARMA Optimizer
NNS.CDF

NNS CDF
NNS.MC

NNS Monte Carlo Sampling
NNS.FSD

NNS FSD Test
NNS.ARMA

NNS ARMA
NNS.FSD.uni

NNS FSD Test uni-directional
NNS

NNS: Nonlinear Nonparametric Statistics