Computes the predictor function of a general noise SVR based on NORMA optimization.
Usage
f(point, t, x, alpha, beta, f_0, kernel = function(x, y, gamma) { exp(-gamma * (norm(x - y, type = "2")^2)) }, gamma, no_beta)
Arguments
point
numeric with the value of the point where we want to evaluate the predictor function.
t
time parameter value indicating the iteration we want to consider.
x
matrix containing training points. Each row must be
a point.
alpha
matrix representing $\alpha$ parameters of NORMA optimization in each iteration, one per row.
beta
numeric representing $\beta$ parameter of NORMA optimization in each iteration.
f_0
initial hypothesis.
kernel
kernel function to use.
gamma
gaussian kernel parameter $\gamma$.
no_beta
boolean indicating if an offset $b$ is used (FALSE) or not (TRUE).
Value
Returns a numeric representing the prediction value.
References
Link to the scientific paper
Kivinen J., Smola A. J., Williamson R.C.: Online learning with kernels. In: IEEE
transactions on signal processing, vol. 52, pp. 2165-2176, IEEE (2004).
with theoretical background for NORMA optimization is provided below.