Learn R Programming

NORMA (version 0.1)

f: Predictor Function

Description

Computes the predictor function of a general noise SVR based on NORMA optimization.

Usage

f(point, t, x, alpha, beta, f_0, kernel = function(x, y, gamma) { exp(-gamma * (norm(x - y, type = "2")^2)) }, gamma, no_beta)

Arguments

point
numeric with the value of the point where we want to evaluate the predictor function.
t
time parameter value indicating the iteration we want to consider.
x
matrix containing training points. Each row must be a point.
alpha
matrix representing $\alpha$ parameters of NORMA optimization in each iteration, one per row.
beta
numeric representing $\beta$ parameter of NORMA optimization in each iteration.
f_0
initial hypothesis.
kernel
kernel function to use.
gamma
gaussian kernel parameter $\gamma$.
no_beta
boolean indicating if an offset $b$ is used (FALSE) or not (TRUE).

Value

Returns a numeric representing the prediction value.

References

Link to the scientific paper

Kivinen J., Smola A. J., Williamson R.C.: Online learning with kernels. In: IEEE transactions on signal processing, vol. 52, pp. 2165-2176, IEEE (2004).

with theoretical background for NORMA optimization is provided below.

http://realm.sics.se/papers/KivSmoWil04(1).pdf

Examples

Run this code
f(c(1,2,3),2,matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=TRUE),
matrix(c(1,2,3,4,5,6),nrow=2,ncol=3,byrow=TRUE),
c(1,2),0,function(x,y,gamma=0){x%*%y},0.1,FALSE)

Run the code above in your browser using DataLab