Multiple ordered historical data are combined individually. Conduct posterior sampling for Bernoulli population with normalized power prior. For the power parameter \(\gamma\), a Metropolis-Hastings algorithm with independence proposal is used. For the model parameter \(p\), Gibbs sampling is used.
BerOMNPP_MCMC2(n0, y0, n, y, prior_gamma, prior_p, gamma_ind_prop, gamma_ini,
nsample, burnin, thin, adjust = FALSE)
A list of class "NPP" with three elements:
the acceptance rate in MCMC sampling for \(\gamma\) using Metropolis-Hastings algorithm.
posterior of the model parameter \(p\).
posterior of the power parameter \(\delta\). It is equal to the cumulative sum of \(\gamma\)
a vector of non-negative integers: numbers of trials in historical data.
a vector of non-negative integers: numbers of successes in historical data.
a non-negative integer: number of trials in the current data.
a non-negative integer: number of successes in the current data.
a vector of the hyperparameters in the prior distribution \(Dirichlet(\alpha_1, \alpha_2, ... ,\alpha_K)\) for \(\gamma\).
a vector of the hyperparameters in the prior distribution \(Beta(\alpha, \beta)\) for \(p\).
a vector of the hyperparameters in the proposal distribution \(Dirichlet(\alpha_1, \alpha_2, ... ,\alpha_K)\) for \(\gamma\).
the initial value of \(\gamma\) in MCMC sampling.
specifies the number of posterior samples in the output.
the number of burn-ins. The output will only show MCMC samples after burn-in.
the thinning parameter in MCMC sampling.
Whether or not to adjust the parameters of the proposal distribution.
Qiang Zhang zqzjf0408@163.com
The outputs include posteriors of the model parameter(s) and power parameter, acceptance rate in sampling \(\gamma\). The normalized power prior distribution is $$\pi_0(\gamma)\prod_{k=1}^{K}\frac{\pi_0(\theta)L(\theta|D_{0k})^{(\sum_{i=1}^{k}\gamma_i)}}{\int \pi_0(\theta)L(\theta|D_{0k})^{(\sum_{i=1}^{k}\gamma_i)} d\theta}.$$
Here \(\pi_0(\gamma)\) and \(\pi_0(\theta)\) are the initial prior distributions of \(\gamma\) and \(\theta\), respectively. \(L(\theta|D_{0k})\) is the likelihood function of historical data \(D_{0k}\), and \(\sum_{i=1}^{k}\gamma_i\) is the corresponding power parameter.
Ibrahim, J.G., Chen, M.-H., Gwon, Y. and Chen, F. (2015). The Power Prior: Theory and Applications. Statistics in Medicine 34:3724-3749.
Duan, Y., Ye, K. and Smith, E.P. (2006). Evaluating Water Quality: Using Power Priors to Incorporate Historical Information. Environmetrics 17:95-106.
BerMNPP_MCMC1
;
BerMNPP_MCMC2
;
BerOMNPP_MCMC1
BerOMNPP_MCMC2(n0 = c(275, 287), y0 = c(92, 125), n = 39, y = 17, prior_gamma=c(1,1,1)/3,
prior_p=c(1/2,1/2), gamma_ind_prop=rep(1,3)/2, gamma_ini=NULL,
nsample = 2000, burnin = 500, thin = 2, adjust = FALSE)
Run the code above in your browser using DataLab