Learn R Programming

⚠️There's a newer version (0.13.6) of this package.Take me there.

NPflow (version 0.10.1)

Bayesian Nonparametrics for Automatic Gating of Flow-Cytometry Data

Description

Dirichlet process mixture of multivariate normal, skew normal or skew t-distributions modeling oriented towards flow-cytometry data pre-processing applications.

Copy Link

Version

Install

install.packages('NPflow')

Monthly Downloads

276

Version

0.10.1

License

LGPL-3 | file LICENSE

Maintainer

Boris P Hejblum

Last Published

May 3rd, 2016

Functions in NPflow (0.10.1)

DPMpost

Posterior estimation for Dirichlet process mixture of multivariate (potentially skew) distibutions models
mvstpdf

multivariate skew-t probability density function
MLE_NiW_mmEM

EM MLE for mixture of NiW
postProcess.DPMMclust

Post-processing Dirichlet Process Mixture Models results to get a mixture distribution of the posterior locations
plot_ConvDPM

Convergence diagnostic plots
DPMGibbsSkewT_SeqPrior_parallel

Slice Sampling of Dirichlet Process Mixture of skew Students's t-distibutions
mmNiWpdfC

C++ implementation of multivariate Normal inverse Wishart probability density function for multiple inputs
traceEpsC

C++ implementation of residual trace computation step used when sampling the scale
MAP_sNiW_mmEM

EM MAP for mixture of sNiW
plot_DPM

Plot of a Dirichlet process mixture of gaussian distribution partition
cluster_est_Mbinder_norm

Point estimate of the partition using a modified Binder loss function
mvnpdf

multivariate-Normal probability density function
mvsnpdf

multivariate Skew-Normal probability density function
wishrnd

Sample from a Wishart distribution
DPMGibbsSkewT_parallel

Slice Sampling of Dirichlet Process Mixture of skew Students's t-distibutions
MLE_gamma

MLE for Gamma distribution
mvnpdfC

C++ implementation of multivariate normal likelihood function for multiple inputs
vclust2mcoclustC

C++ implementation
cluster_est_Fmeasure

Point estimate of the partition using the F-measure as the cost function.
rNiW

Sample from a Normal inverse-Wishart distribution whose parameter are given by the structure hyper
mmvsnpdfC

C++ implementation of multivariate skew Normal probability density function for multiple inputs
priormix

Construction of an Empirical based prior
mvsnlikC

C++ implementation of multivariate skew normal likelihood function for multiple inputs
Flimited

Compute a limited F-measure
print.summaryDPMMclust

Methods for a summary of a 'DPMMclust' object
DPMGibbsSkewN

Slice Sampling of Dirichlet Process Mixture of skew normal ditributions
update_SSst

Return updated sufficient statistics S for skew t-distribution with data matrix z
mmNiWpdf

multivariate Normal inverse Wishart probability density function for multiple inputs
DPMGibbsSkewT

Slice Sampling of Dirichlet Process Mixture of skew Students's t-distibutions
lgamma_mv

Multivariate log gamma function
plot_DPMsn

Plot of a Dirichlet process mixture of skew normal distribution partition
Fmeasure_costC

Multiple cost computations with Fmeasure as the loss function
mmvstpdfC

C++ implementation of multivariate Normal probability density function for multiple inputs
update_SS

Return updated sufficient statistics S with new data matrix z
mvnlikC

C++ implementation of multivariate Normal probability density function for multiple inputs
FmeasureC_no0

C++ implementation of the F-measure computation without the ref classe 0
DPMGibbsN_parallel

Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha
DPMGibbsSkewT_SeqPrior

Slice Sampling of Dirichlet Process Mixture of skew Students's t-distibutions
MLE_sNiW_mmEM

EM MLE for mixture of sNiW
NPflow-package

Bayesian Nonparametrics for Automatic Gating of Flow Cytometry data
mmsNiWlogpdf

Probability density function of multiple structured Normal inverse Wishart
cytoScatter

Scatterplot of flow cytometry data
plot_DPMst

Plot of a Dirichlet process mixture of skew t-distribution partition
mmvnpdfC

C++ implementation of multivariate Normal probability density function for multiple inputs
mvtpdf

multivariate Student's t-distribution probability density function
mmvtpdfC

C++ implementation of multivariate Normal probability density function for multiple inputs
sample_alpha

Sampler for the concentration parameter of a Dirichlet process
rCRP

Generating cluster data from the Chinese Restaurant Process
similarityMatC

C++ implementation
cluster_est_pear

Gets a point estimate of the partition using posterior expected adjusted Rand index (PEAR)
DPMGibbsN_SeqPrior

Slice Sampling of Dirichlet Process Mixture of Gaussian distibutions
DPMGibbsSkewN_parallel

Parallel Implementation of Slice Sampling of Dirichlet Process Mixture of skew Normals
FmeasureC

C++ implementation of the F-measure computation
NuMatParC

C++ implementation of similarity matrix computation using precomputed distances
evalClustLoss

ELoss of a partition point estimate compared to a gold standard
sampleClassC

C++ implementation of the multinomial sampling from a matrix of column vectors, each containing the sampling probabilities for their respective draw
similarityMat_nocostC

C++ implementation
DPMGibbsN

Slice Sampling of the Dirichlet Process Mixture Model with a prior on alpha
invwishrnd

Sample from a inverse-Wishart distribution
burn.DPMMclust

Burning MCMC iterations from a Dirichlet Process Mixture Model.
mmsNiWpdfC

C++ implementation of multivariate structured Normal inverse Wishart probability density function for multiple inputs
MLE_sNiW

MLE for sNiW distributed observations
update_SSsn

Return updated sufficient statistics S with new data matrix z
mvstlikC

C++ implementation of multivariate skew t likelihood function for multiple inputs
similarityMat

Computes the coclustering (or similarity) matrix
rNNiW

Sample from a normal inverse Wishart distribution whose parameter are given by the structure SufStat
cluster_est_binder

Point estimate of the partition for the Binder loss function
summary.DPMMclust

Summarizing Dirichlet Process Mixture Models