Learn R Programming

NPflow (version 0.9.0)

mmsNiWpdfC: C++ implementation of multivariate structured Normal inverse Wishart probability density function for multiple inputs

Description

C++ implementation of multivariate structured Normal inverse Wishart probability density function for multiple inputs

Usage

mmsNiWpdfC(xi, psi, Sigma, U_xi0, U_psi0, U_B0, U_Sigma0, U_df0, Log = TRUE)

Arguments

xi
data matrix of dimensions p x n where columns contain the observed mean vectors.
psi
data matrix of dimensions p x n where columns contain the observed skew parameter vectors.
Sigma
list of length n of observed variance-covariance matrices, each of dimensions p x p.
U_xi0
mean vectors matrix of dimension p x K, K being the number of distributions for which the density probability has to be evaluated.
U_psi0
skew parameter vectors matrix of dimension p x K.
U_B0
list of length K of structured scale matrices, each of dimensions p x p.
U_Sigma0
list of length K of variance-covariance matrices, each of dimensions p x p.
U_df0
vector of length K of degree of freedom parameters.
Log
logical flag for returning the log of the probability density function. Defaults is TRUE.

Value

  • matrix of densities of dimension K x n

References

Hejblum BP, Alkhassim C, Gottardo R, Caron F, Thiebaut R, Sequential Dirichlet Process Mixtures of Multivariate Skew t-distributions for Model-based Clustering of Flow Cytometry Data, in preparation.