Learn R Programming

NSM3 (version 1.1)

pHollBivSym: Hollander Bivariate Symmetry

Description

Function to compute the P-value for the observed Hollander A statistic.

Usage

pHollBivSym(x,y=NA,g=NA,method=NA,n.mc=10000)

Arguments

Value

Returns a list with "NSM3Ch5p" class containing the following components:mnumber of observations in the first data group (X)nnumber of observations in the second data group (Y)obs.statthe observed A statisticp.valupper tail P-value

Details

The data entry is intended to be flexible, so that the two groups of data can be entered in any of three ways. For data a=1,2 and b=3,4 all of the following are equivalent: pHollBivSym(x=c(1,2),y=c(3,4)) pHollBivSym(x=list(c(1,2),c(3,4))) pHollBivSym(x=c(1,2,3,4),g=c(1,1,2,2))

References

Kepner, James L., and Ronald H. Randies. "Comparison of tests for bivariate symmetry versus location and/or scale alternatives." Communications in Statistics-Theory and Methods 13.8 (1984): 915-930. Hilton, Joan F., and Lauren Gee. "The size and power of the exact bivariate symmetry test." Computational statistics & data analysis 26.1 (1997): 53-69.

Examples

Run this code
##Hollander-Wolfe-Chicken Example 3.11 Insulin Clearance in Kidney Transplants
x<-c(61.4,63.3,63.7,80,77.3,84,105)
y<-c(70.8,89.2,65.8,67.1,87.3,85.1,88.1)

##Exact p-value
pHollBivSym(x,y)

Run the code above in your browser using DataLab