Learn R Programming

NScluster (version 1.1.0)

PalmTypeC: Non-Parametric Estimate of The Palm Intensity of Type C Model

Description

Calculate the non-parametric Palm intensity function of Type C Model estimated directly from a set of point pattern data.

Usage

PalmTypeC(offspring, pa, delta, ty, plot=TRUE)

Arguments

offspring
the list of coordinates $(x,y)$ of offspring points.
pa
the parameters $(lambda_i, nu_{1,i}, a_i, sigma_{1,i}, sigma_{2,i})$, $i=1,2,...,I
delta
a width for the non-parametric Palm intensity function.
ty
the variable $Ty$ for the standardized coordinates of points in the rectangular region $[0,1]*[0,Ty]$ without loss of generality except for the scaling.
plot
logical. If TRUE (default) the non-parametric estimate and the curves of the true and MPLE (the maximum Palm likelihood estimator) parameters are shown.

Value

References

U. Tanaka, Y. Ogata and K. Katsura, Simulation and estimation of the Neyman-Scott type spatial cluster models, Computer Science Monographs No.34, 2008, 1-44. The Institute of Statistical Mathematics.

Examples

Run this code
  ## simulation
  seeds <- c(822, 913, 905)
  mu1 <- 5;  nu1 <- 30;  sig1 <- 0.01 
  mu2 <- 9;  nu2 <- 150;  sig2 <- 0.05
  ty <- 1
  z <- SimulateTypeC(seeds, c(mu1,nu1,sig1), c(mu2,nu2,sig2), ty, 200, 300)

  ## estimation
  delta <- 0.001
  pa1 <- c(1500, 30, 0.1, 0.01, 0.05)
  pa2 <- c(0.1281e+04, 0.43134e+02, 0.30049, 0.14926e-01, 0.51719e-01)
  pa <- matrix(c(pa1,pa2), 2, 5, byrow=TRUE) 
  PalmTypeC(z$offspring, pa, delta, ty)

Run the code above in your browser using DataLab