Let random variable $U$ be independently and uniformly distributed in [0,1]. For any $r>=0$, $$Q_{p,c}(r) := \int_0^r q_{p,c}(t)dt$$
$$= c^{p-1}(p-1) \frac{(r+c)^{1-p} - c^{1-p}}{1-p}$$
$$= 1 - c^{p-1} (r+c)^{1-p}.$$
Here, we put $Q_{p,c}(r) = U$. From this, we have
$$r = c\{(1-U)^{1/(1-p)} - 1\}.$$
Similarly, coordinate of the offspring points $(x_j^i, y_j^i), j=1,2,...,Poisson(nu)$ with
the inverse-power type is given for each $i=1,2,...,Poisson(mu)$,
$$x_j^i = x_i^p + r \cos(2 \pi U),$$
$$y_j^i = y_i^p + r \sin(2 \pi U),$$
using series of different uniform random number ${U}$ for different $i$ and $j$.