Learn R Programming

NScluster (version 1.2.0)

EstimateTypeB: Parameter Estimation of the Type B Model

Description

Parameter estimation of the Type B model by using the Palm Log-Likelihood Function.

Usage

EstimateTypeB(xy.points, pars, eps = 0.001, process.report = 0, plot = TRUE)

Arguments

xy.points

a matrix containing the coordinates (x,y) of points in a unit square: \(W=[0,1]\times[0,1]\).

pars

a named vector of containing the initial guess of the model parameters (mu1, mu2, nu, sigma1, sigma2), where (mu\(i\), nu, sigma\(i\)) is an intensity of parents, an expected number of descendants, a parameter of the dispersal kernel for superposed component \(i\) (\(i = 1,2\)), respectively.

eps

the optimization procedure is iterated at most 1000 times until process2$stderr becomes smaller than eps.

process.report

the level of reporting the process of minimizing. Allowed values are as follows:

0

no report (default).

1

output the process of minimizing the negative Palm log-likelihood function until the values converge to MPLEs. (process1)

2

output the process of optimizing by the simplex with the normalized parameters. (process2)

3

output both processes.

plot

logical. If TRUE (default), the process of optimizing by the simplex with the normalized parameters is plotted.

Value

mple

MPLE (maximum Palm likelihood estimate).

process1

a list with following components. (Only returned if process.report = 1 or 3.)

cflg

1 (="update") or -1 (="testfn"), where "update" indicates that -log L value has attained the minimum so far, otherwise not.

logl.palm

the minimized -log L in the process of minimizing the negative Palm log-likelihood function.

mples

corresponding MPLEs (mu, nu, a, sigma1, sigma2), where mu = mu1+mu2 and a = mu1/(mu1+mu2).

process2

a list with following components. (Only returned if process.report = 2 or 3.)

logl.simplex

the minimized -log L by the simplex method.

stderr

the standard deviations.

pa.normal

the normalized variables (mu, nu, a, sigma1, sigma2) as described above.

Details

The Palm intensity function of the Type B model is calculated as follows:

For all \(r \ge 0\),

$$\lambda_{\bm{o}}(r) = \lambda + \frac{\nu}{4 \pi} \left\{ \frac{a}{{\sigma_1}^2} \exp \left( -\frac{r^2}{4{\sigma_1}^2} \right)+ \frac{(1-a)}{{\sigma_2}^2} \exp \left( -\frac{r^2}{4{\sigma_2}^2} \right) \right\},$$

where \(\lambda = \nu(\mu_1+\mu_2)\) is the total population size and \(a = \mu_1/(\mu_1+\mu_2)\) is the ratio of the parent points of the smaller sized cluster to the total ones.

The Palm log-likelihood function of the Type B model on \(W\) is given by

\(\log L(\lambda, \alpha, \beta, \sigma_1, \sigma_2)\) $$=\sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \left[ \lambda + \frac{1}{4 \pi} \left\{ \frac{\alpha}{{\sigma_1}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_1}^2} \right) + \frac{\beta}{{\sigma_2}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_2}^2} \right) \right\} \right]$$ $$- N(W) \left[ \frac{\pi \lambda}{4} + \alpha \left\{ 1 - \exp \left( -\frac{1}{16{\sigma_1}^2} \right) \right\} + \beta \left\{ 1- \exp \left( -\frac{1}{16{\sigma_2}^2} \right) \right\} \right],$$

where \(\alpha = a\nu\) and \(\beta = (1-a)\nu\).

References

U. Tanaka, Y. Ogata and K. Katsura, Simulation and estimation of the Neyman-Scott type spatial cluster models, Computer Science Monographs No.34, 2008, 1-44. The Institute of Statistical Mathematics.

Examples

Run this code
# NOT RUN {
## simulation
pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03)
z <- SimulateTypeB(pars, seed = 257)

## estimation
## need very long c.p.u time in the minimization procedure
# }
# NOT RUN {
init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02)
EstimateTypeB(z$offspring$xy, init.pars)
# }

Run the code above in your browser using DataLab