Parameter estimation of the Type B model by using the Palm Log-Likelihood Function.
EstimateTypeB(xy.points, pars, eps = 0.001, process.report = 0, plot = TRUE)
a matrix containing the coordinates (x,y)
of points in
a unit square: \(W=[0,1]\times[0,1]\).
a named vector of containing the initial guess of the model
parameters (mu1
, mu2
, nu
, sigma1
, sigma2
),
where (mu
\(i\), nu
, sigma
\(i\)) is an intensity of
parents, an expected number of descendants, a parameter of the dispersal
kernel for superposed component \(i\) (\(i = 1,2\)), respectively.
the optimization procedure is iterated at most 1000 times until
process2$stderr
becomes smaller than eps
.
the level of reporting the process of minimizing. Allowed values are as follows:
no report (default).
output the process of minimizing the negative Palm log-likelihood
function until the values converge to MPLEs. (process1
)
output the process of optimizing by the simplex with
the normalized parameters. (process2
)
output both processes.
logical. If TRUE
(default), the process of optimizing by
the simplex with the normalized parameters is plotted.
MPLE (maximum Palm likelihood estimate).
a list with following components.
(Only returned if process.report
= 1 or 3.)
1 (="update") or -1 (="testfn"), where "update" indicates that -log L value has attained the minimum so far, otherwise not.
the minimized -log L in the process of minimizing the negative Palm log-likelihood function.
corresponding MPLEs (mu
, nu
, a
,
sigma1
, sigma2
), where mu
= mu1
+mu2
and a
= mu1
/(mu1
+mu2
).
a list with following components.
(Only returned if process.report
= 2 or 3.)
the minimized -log L by the simplex method.
the standard deviations.
the normalized variables (mu
, nu
, a
,
sigma1
, sigma2
) as described above.
The Palm intensity function of the Type B model is calculated as follows:
For all \(r \ge 0\),
$$\lambda_{\bm{o}}(r) = \lambda + \frac{\nu}{4 \pi} \left\{ \frac{a}{{\sigma_1}^2} \exp \left( -\frac{r^2}{4{\sigma_1}^2} \right)+ \frac{(1-a)}{{\sigma_2}^2} \exp \left( -\frac{r^2}{4{\sigma_2}^2} \right) \right\},$$
where \(\lambda = \nu(\mu_1+\mu_2)\) is the total population size and \(a = \mu_1/(\mu_1+\mu_2)\) is the ratio of the parent points of the smaller sized cluster to the total ones.
The Palm log-likelihood function of the Type B model on \(W\) is given by
\(\log L(\lambda, \alpha, \beta, \sigma_1, \sigma_2)\) $$=\sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \left[ \lambda + \frac{1}{4 \pi} \left\{ \frac{\alpha}{{\sigma_1}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_1}^2} \right) + \frac{\beta}{{\sigma_2}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_2}^2} \right) \right\} \right]$$ $$- N(W) \left[ \frac{\pi \lambda}{4} + \alpha \left\{ 1 - \exp \left( -\frac{1}{16{\sigma_1}^2} \right) \right\} + \beta \left\{ 1- \exp \left( -\frac{1}{16{\sigma_2}^2} \right) \right\} \right],$$
where \(\alpha = a\nu\) and \(\beta = (1-a)\nu\).
U. Tanaka, Y. Ogata and K. Katsura, Simulation and estimation of the Neyman-Scott type spatial cluster models, Computer Science Monographs No.34, 2008, 1-44. The Institute of Statistical Mathematics.
# NOT RUN {
## simulation
pars <- c(mu1 = 10.0, mu2 = 40.0, nu = 30.0, sigma1 = 0.01, sigma2 = 0.03)
z <- SimulateTypeB(pars, seed = 257)
## estimation
## need very long c.p.u time in the minimization procedure
# }
# NOT RUN {
init.pars <- c(mu1 = 20.0, mu2 = 30.0, nu = 30.0, sigma1 = 0.02, sigma2 = 0.02)
EstimateTypeB(z$offspring$xy, init.pars)
# }
Run the code above in your browser using DataLab