Parameter estimation of the Type C model by using the Palm Log-Likelihood Function.
EstimateTypeC(xy.points, pars, eps = 0.001, process.report = 0, plot = TRUE)
a matrix containing the coordinates (x,y)
of points in
a unit square: \(W=[0,1]\times[0,1]\).
a named vector of containing the initial guess of the model
parameters (mu1
, mu2
, nu1
, nu2
, sigma1
,
sigma2
), where (mu
\(i\), nu
\(i\),
sigma
\(i\)) is an intensity of parents, an expected number of
descendants, a parameter of the dispersal kernel for superposed component
\(i\) (\(i = 1,2\)), respectively.
the optimization procedure is iterated at most 1000 times until
proecess2$stderr
becomes smaller than eps
.
the level of reporting the process of minimizing. Allowed values are as follows:
no report (default).
output the process of minimizing the negative Palm log-likelihood
function until the values converge to MPLEs. (process1
)
output the process of optimizing by the simplex with
the normalized parameters. (process2
)
output both processes.
logical. If TRUE
(default), the process of optimizing by
the simplex with the normalized parameters is plotted.
MPLE (maximum Palm likelihood estimate).
a list with following components.
(Only returned if process.report
= 1 or 3.)
1 (="update") or -1 (="testfn"), where "update" indicates that -log L value has attained the minimum so far, otherwise not.
the minimized -log L in the process of minimizing the negative Palm log-likelihood function.
corresponding MPLEs
(lambda
, nu1
, a
, sigma1
, sigma2
),
where lambda
= mu1
*nu1
+mu2
*nu2
and
a
= mu1
*nu1
/lambda
.
a list with following components.
(Only returned if process.report
= 2 or 3.)
the minimized -log L by the simplex method.
the standard deviations.
the normalized variables (lambda
, nu1
,
a
, sigma1
, sigma2
) as described above.
The Palm intensity function of the Type C model is calculated as follows:
For all \(r \ge 0\),
$$\lambda_{\bm{o}}(r) = \lambda + \frac{1}{4 \pi} \left\{ \frac{a\nu_1}{{\sigma_1}^2} \exp \left( -\frac{r^2}{4{\sigma_1}^2} \right) + \frac{(1-a)\nu_2}{{\sigma_2}^2} \exp \left( -\frac{r^2}{4{\sigma_2}^2} \right) \right\},$$
where \(\lambda = \mu_1\nu_1 + \mu_2\nu_2\) is the total population size and \(a = \mu_1\nu_1/\lambda\) is the ratio of the all offspring points of smaller sized cluster to the total population size.
The Palm log-likelihood function of the Type C model on \(W\) is given by
\(\log L(\lambda, \alpha, \beta, \sigma_1, \sigma_2)\) $$= \sum_{\{i,j; i<j, r_{ij} \le 1/2\}} \log \left[ \lambda + \frac{1} {4 \pi} \left\{ \frac{\alpha}{{\sigma_1}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_1}^2} \right) + \frac{\beta}{{\sigma_2}^2} \exp \left( -\frac{{r_{ij}}^2}{4{\sigma_2}^2} \right) \right\} \right]$$
$$-N(W) \left[ \frac{\pi\lambda}{4} + \alpha \left\{ 1 - \exp \left( -\frac{1}{16{\sigma_1}^2} \right) \right\} + \beta \left\{ 1- \exp \left( -\frac{1}{16{\sigma_2}^2} \right) \right\} \right],$$
where \(\alpha = a\nu_1\) and \(\beta = (1-a)\nu_2\).
U. Tanaka, Y. Ogata and K. Katsura, Simulation and estimation of the Neyman-Scott type spatial cluster models, Computer Science Monographs No.34, 2008, 1-44. The Institute of Statistical Mathematics.
# NOT RUN {
## simulation
pars <- c(mu1 = 5.0, mu2 = 9.0, nu1 = 30.0, nu2 = 150.0,
sigma1 = 0.01, sigma2 = 0.05)
z <- SimulateTypeC(pars, seed = 555)
## estimation
## need long c.p.u time in the minimization procedure
# }
# NOT RUN {
init.pars <- c(mu1 = 10.0, mu2 = 10.0, nu1 = 30.0, nu2 = 120.0,
sigma1 = 0.03, sigma2 = 0.03)
EstimateTypeC(z$offspring$xy, init.pars)
# }
Run the code above in your browser using DataLab