Generate a convolutional functional autoregressive process with order 2.
Generate a convolutional functional autoregressive process with order 2.
g_cfar2(
tmax = 1001,
rho = 5,
phi_func1 = NULL,
phi_func2 = NULL,
grid = 1000,
sigma = 1,
ini = 100
)g_cfar2(
tmax = 1001,
rho = 5,
phi_func1 = NULL,
phi_func2 = NULL,
grid = 1000,
sigma = 1,
ini = 100
)
length of time.
parameter for O-U process (noise process).
the first convolutional function. Default is 0.5*x^2+0.5*x+0.13.
the second convolutional function. Default is 0.7*x^4-0.1*x^3-0.15*x.
the number of grid points used to construct the functional time series. Default is 1000.
the standard deviation of O-U process. Default is 1.
the burn-in period.
The function returns a list with components:
a tmax-by-(grid+1) matrix following a CFAR(1) process.
the innovation at time tmax.
The function returns a list with components:
a tmax-by-(grid+1) matrix following a CFAR(1) process.
the innovation at time tmax.
Liu, X., Xiao, H., and Chen, R. (2016) Convolutional autoregressive models for functional time series. Journal of Econometrics, 194, 263-282.
Liu, X., Xiao, H., and Chen, R. (2016) Convolutional autoregressive models for functional time series. Journal of Econometrics, 194, 263-282.
# NOT RUN {
phi_func1= function(x){
return(0.5*x^2+0.5*x+0.13)
}
phi_func2= function(x){
return(0.7*x^4-0.1*x^3-0.15*x)
}
y=g_cfar2(100,5,phi_func1,phi_func2,grid=1000,sigma=1,ini=100)
phi_func1= function(x){
return(0.5*x^2+0.5*x+0.13)
}
phi_func2= function(x){
return(0.7*x^4-0.1*x^3-0.15*x)
}
y=g_cfar2(1000,5,phi_func1,phi_func2,grid=1000,sigma=1,ini=100)
# }
Run the code above in your browser using DataLab