powered by
Generate a convolutional functional autoregressive process with order 1.
g_cfar1( tmax = 1001, rho = 5, phi_func = NULL, grid = 1000, sigma = 1, ini = 100 )
The function returns a list with components:
a tmax-by-(grid+1) matrix following a CFAR(1) process.
the innovation at time tmax.
length of time.
parameter for O-U process (noise process).
convolutional function. Default is density function of normal distribution with mean 0 and standard deviation 0.1.
the number of grid points used to construct the functional time series. Default is 1000.
the standard deviation of O-U process. Default is 1.
the burn-in period.
Liu, X., Xiao, H., and Chen, R. (2016) Convolutional autoregressive models for functional time series. Journal of Econometrics, 194, 263-282.
phi_func= function(x) { return(dnorm(x,mean=0,sd=0.1)) } y=g_cfar1(100,5,phi_func,grid=1000,sigma=1,ini=100)
Run the code above in your browser using DataLab