powered by
Generate a convolutional functional autoregressive process with order 2.
g_cfar2( tmax = 1001, rho = 5, phi_func1 = NULL, phi_func2 = NULL, grid = 1000, sigma = 1, ini = 100 )
The function returns a list with components:
a tmax-by-(grid+1) matrix following a CFAR(1) process.
the innovation at time tmax.
length of time.
parameter for O-U process (noise process).
the first convolutional function. Default is 0.5*x^2+0.5*x+0.13.
the second convolutional function. Default is 0.7*x^4-0.1*x^3-0.15*x.
the number of grid points used to construct the functional time series. Default is 1000.
the standard deviation of O-U process. Default is 1.
the burn-in period.
Liu, X., Xiao, H., and Chen, R. (2016) Convolutional autoregressive models for functional time series. Journal of Econometrics, 194, 263-282.
phi_func1= function(x){ return(0.5*x^2+0.5*x+0.13) } phi_func2= function(x){ return(0.7*x^4-0.1*x^3-0.15*x) } y=g_cfar2(100,5,phi_func1,phi_func2,grid=1000,sigma=1,ini=100)
Run the code above in your browser using DataLab