Dist<-"Normal"; Dist_Par<-list(Mean=0,Variance=1,Error_Variance=0.5)
No_Of_Var<-2; Beta<-c(-1,2,1); N<-5000; Family<-"linear"
Full_Data<-GenGLMdata(Dist,Dist_Par,No_Of_Var,Beta,N,Family)
rf<-rep(100*c(6,10),50); Original_Data<-Full_Data$Complete_Data;
LeverageSampling(rf = rf, Y = as.matrix(Original_Data[,1]),
X = as.matrix(Original_Data[,-1]),N = nrow(Original_Data),
S_alpha = 0.95,
family = "linear")->Results
plot_Beta(Results)
Dist<-"Normal"; Dist_Par<-list(Mean=0,Variance=1)
No_Of_Var<-2; Beta<-c(-1,2,1); N<-5000; Family<-"logistic"
Full_Data<-GenGLMdata(Dist,Dist_Par,No_Of_Var,Beta,N,Family)
rf<-rep(100*c(6,10),25); Original_Data<-Full_Data$Complete_Data;
LeverageSampling(rf = rf, Y = as.matrix(Original_Data[,1]),
X = as.matrix(Original_Data[,-1]),N = nrow(Original_Data),
S_alpha = 0.95,
family = "logistic")->Results
plot_Beta(Results)
Dist<-"Normal";
No_Of_Var<-2; Beta<-c(-1,0.5,0.5); N<-5000; Family<-"poisson"
Full_Data<-GenGLMdata(Dist,NULL,No_Of_Var,Beta,N,Family)
rf<-rep(100*c(6,10),25); Original_Data<-Full_Data$Complete_Data;
LeverageSampling(rf = rf, Y = as.matrix(Original_Data[,1]),
X = as.matrix(Original_Data[,-1]),N = nrow(Original_Data),
S_alpha = 0.95,
family = "poisson")->Results
plot_Beta(Results)
Run the code above in your browser using DataLab