indexes<-1:ceiling(nrow(Electric_consumption)*0.005)
Original_Data<-cbind(Electric_consumption[indexes,1],1,
Electric_consumption[indexes,-1])
colnames(Original_Data)<-c("Y",paste0("X",0:ncol(Original_Data[,-c(1,2)])))
for (j in 3:5) {
Original_Data[,j]<-scale(Original_Data[,j])
}
No_of_Variables<-ncol(Original_Data[,-c(1,2)])
Squared_Terms<-paste0("X",1:No_of_Variables,"^2")
term_no <- 2
All_Models <- list(c("X0",paste0("X",1:No_of_Variables)))
Original_Data<-cbind(Original_Data,Original_Data[,-c(1,2)]^2)
colnames(Original_Data)<-c("Y","X0",paste0("X",1:No_of_Variables),
paste0("X",1:No_of_Variables,"^2"))
for (i in 1:No_of_Variables){
x <- as.vector(combn(Squared_Terms,i,simplify = FALSE))
for(j in 1:length(x)){
All_Models[[term_no]] <- c("X0",paste0("X",1:No_of_Variables),x[[j]])
term_no <- term_no+1
}
}
All_Models<-All_Models[c(1,12:16)]
names(All_Models)<-paste0("Model_",1:length(All_Models))
r0<-300; rf<-rep(100*c(6,9),50);
modelRobustLinSub(r0 = r0, rf = rf, Y = as.matrix(Original_Data[,1]),
X = as.matrix(Original_Data[,-1]),N = nrow(Original_Data),
Apriori_probs = rep(1/length(All_Models),length(All_Models)),
All_Combinations = All_Models,
All_Covariates = colnames(Original_Data)[-1])->Results
Beta_Plots<-plot_Beta(Results)
Run the code above in your browser using DataLab