indexes<-1:ceiling(nrow(One_million_songs)*0.5)
Original_Data<-One_million_songs[indexes,]
colnames(Original_Data)<-c("Y",paste0("X",1:ncol(Original_Data[,-1])))
# Scaling the covariate data
for (j in 2:4) {
Original_Data[,j]<-scale(Original_Data[,j])
}
No_of_Variables<-ncol(Original_Data[,-1])
Squared_Terms<-paste0("X",1:No_of_Variables,"^2")
term_no <- 2
All_Models <- list(paste0("X",1:No_of_Variables))
Original_Data<-cbind(Original_Data,Original_Data[,-1]^2)
colnames(Original_Data)<-c("Y",paste0("X",1:No_of_Variables),
paste0("X",1:No_of_Variables,"^2"))
for (i in 1:No_of_Variables)
{
x <- as.vector(combn(Squared_Terms,i,simplify = FALSE))
for(j in 1:length(x))
{
All_Models[[term_no]] <- c(paste0("X",1:No_of_Variables),x[[j]])
term_no <- term_no+1
}
}
All_Models<-All_Models[1:4]
names(All_Models)<-paste0("Model_",1:length(All_Models))
r0<-300; rf<-rep(100*c(6,9),25);
modelRobustPoiSub(r0 = r0, rf = rf, Y = as.matrix(Original_Data[,1]),
X = as.matrix(Original_Data[,-1]),N = nrow(Original_Data),
Apriori_probs = rep(1/length(All_Models),length(All_Models)),
All_Combinations = All_Models,
All_Covariates = colnames(Original_Data)[-1])->Results
Beta_Plots<-plot_Beta(Results)
Run the code above in your browser using DataLab