Learn R Programming

NetInt (version 1.0.0)

PUA.int: Per-edge Unweighted Average (PUA) network integration

Description

It performs the per-edge unweighted average integration between networks:

w_ij = 1|D(i,j)| _d D(i,j) w_ij^d where: D(i,j) = d | v_i V^d v_j V^d

Usage

PUA.int(...)

Value

the integrated matrix : the matrix resulting from PUA.

Arguments

...

a list of numeric matrices. These must be named matrices representing adjacency matrices of the networks. Matrices may have different dimensions, but corresponding elements in different matrices must have the same name.

Examples

Run this code
# Create three example networks of different size
set.seed(123);
A1 <- matrix(runif(100, min = 0, max = 1), nrow = 10);
A1[lower.tri(A1)] = t(A1)[lower.tri(A1)];
diag(A1) <- 0;
rownames(A1) <- colnames(A1) <- sample(LETTERS, 10);

A2 <- matrix(runif(49, min = 0, max = 1), nrow = 7);
A2[lower.tri(A2)] = t(A2)[lower.tri(A2)];
diag(A2) <- 0;
rownames(A2) <- colnames(A2) <- rownames(A1)[1:7];

A3 <- matrix(runif(100, min = 0, max = 1), nrow = 10);
A3[lower.tri(A3)] = t(A3)[lower.tri(A3)];
diag(A3) <- 0;
rownames(A3) <- colnames(A3) <- c(rownames(A1)[1:5], c("A", "B", "Z", "K", "Q"));

# Integrate networks using Per-edge Unweighted Average (PUA) method
A_int <- PUA.int(A1, A2, A3);

Run the code above in your browser using DataLab