Learn R Programming

NetPathMiner (version 1.8.0)

pathCluster: 3M Markov mixture model for clustering pathways

Description

3M Markov mixture model for clustering pathways

Usage

pathCluster(ybinpaths, M, iter = 1000)

Arguments

ybinpaths
The training paths computed by pathsToBinary.
M
The number of clusters.
iter
The maximum number of EM iterations.

Value

A list with the following items:
h
The posterior probabilities that each path belongs to each cluster.
labels
The cluster membership labels.
theta
The probabilities of each gene for each cluster.
proportions
The mixing proportions of each path.
likelihood
The likelihood convergence history.
params
The specific parameters used.

References

Mamitsuka, H., Okuno, Y., and Yamaguchi, A. 2003. Mining biologically active patterns in metabolic pathways using microarray expression profiles. SIGKDD Explor. News l. 5, 2 (Dec. 2003), 113-121.

See Also

Other Path clustering & classification methods: pathClassifier; pathsToBinary; plotClassifierROC; plotClusterMatrix, plotClusterProbs, plotClusters; plotPathClassifier; plotPathCluster; predictPathClassifier; predictPathCluster

Examples

Run this code
## Prepare a weighted reaction network.
	## Conver a metabolic network to a reaction network.
 data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
 rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

	## Assign edge weights based on Affymetrix attributes and microarray dataset.
 # Calculate Pearson's correlation.
	data(ex_microarray)	# Part of ALL dataset.
	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
		weight.method = "cor", use.attr="miriam.uniprot", bootstrap = FALSE)

	## Get ranked paths using probabilistic shortest paths.
 ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
					K=20, minPathSize=8)

	## Convert paths to binary matrix.
	ybinpaths <- pathsToBinary(ranked.p)
	p.cluster <- pathCluster(ybinpaths, M=2)
	plotClusters(ybinpaths, p.cluster)

Run the code above in your browser using DataLab