Applies the Triangulated Maximally Filtered Graph (TMFG) filtering method (Please see and cite Massara et al., 2016)
TMFG(data, normal = FALSE, weighted = TRUE, depend = FALSE,
na.data = c("pairwise", "listwise", "fiml", "none"))
Can be a dataset or a correlation matrix
Should data be transformed to a normal distribution? Input must be a dataset. Defaults to FALSE. Data is not transformed to be normal. Set to TRUE if data should be transformed to be normal (computes correlations using the cor_auto function from the qgraph package)
Should network be weighted? Defaults to TRUE. Set to FALSE to produce an unweighted (binary) network
Is network a dependency (or directed) network? Defaults to FALSE. Set to TRUE to generate a TMFG-filtered dependency network (output obtained from the depend function)
How should missing data be handled? For "listwise" deletion the na.omit function is applied. Set to "fiml" for Full Information Maxmimum Likelihood (psych package). Full Information Maxmimum Likelihood is recommended but time consuming
Returns a list of the adjacency matrix (A), separators (separators), and cliques (cliques)
Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R. (2018). Network structure of the Wisconsin Schizotypy Scales-Short Forms: Examining psychometric network filtering approaches. Behavior Research Methods, 1-20, doi:10.3758/s13428-018-1032-9
Massara, G. P., Di Matteo, T., & Aste, T. (2016). Network filtering for big data: Triangulated maximally filtered graph. Journal of Complex Networks, 5(2), 161-178.
# NOT RUN {
weighted_TMFGnetwork<-TMFG(neoOpen)
unweighted_TMFGnetwork<-TMFG(neoOpen,weighted=FALSE)
# }
Run the code above in your browser using DataLab