Learn R Programming

NetworkToolbox (version 1.1.1)

louvain: Louvain Community Detection Algorithm

Description

Computes a vector of communities (community) and a global modularity measure (Q)

Usage

louvain(A, gamma, M0)

Arguments

A

An adjacency matrix of network data

gamma

Defaults to 1. Set to gamma > 1 to detect smaller modules and gamma < 1 for larger modules

M0

Input can be an initial community vector. Defaults to none

Value

Returns a list of community and Q

References

Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059-1069.

Examples

Run this code
# NOT RUN {
A<-TMFG(neoOpen)$A

modularity<-louvain(A)
# }

Run the code above in your browser using DataLab