
Last chance! 50% off unlimited learning
Sale ends in
Obtains a global or local network characteristic from neural network data
neuralstat(filarray, statistic = c("CC", "ASPL", "Q", "S", "transitivity",
"conn", "BC", "LC", "deg", "inDeg", "outDeg", "degRI", "str", "inStr",
"outStr", "strRI", "comm", "EC", "lev", "rspbc", "hybrid", "impact"),
progBar = TRUE, ...)
Filtered array from neuralnetfilter function
A statistic to compute
Should progress bar be displayed? Defaults to TRUE. Set FALSE for no progress bar
Additional arguments for statistics functions
Returns vector of global characteristics (rows = participants, columns = statistic) or a matrix of local characteristics (rows = ROIs, columns = participants)
Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
Joyce, K. E., Laurienti, P. J., Burdette, J. H., & Hayasaka, S. (2010). A new measure of centrality for brain networks. PLoS One, 5(8), e12200.
Kenett, Y. N., Kenett, D. Y., Ben-Jacob, E., & Faust, M. (2011). Global and local features of semantic networks: Evidence from the Hebrew mental lexicon. PloS one, 6(8), e23912.
Kivimaki, I., Lebichot, B., Saramaki, J., & Saerens, M. (2016). Two betweenness centrality measures based on Randomized Shortest Paths. Scientific Reports, 6(19668), 1-15.
Pozzi, F., Di Matteo, T., & Aste, T. (2013). Spread of risk across financial markets: Better to invest in the peripheries. Scientific Reports, 3(1655), 1-7.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 1059-1069.
# NOT RUN {
neuralarray <- convertConnBrainMat()
filteredneuralarray <- neuralnetfilter(neuralarray, method = "threshold", thres = .50)
ClusteringCoefficient <- neuralstat(filteredneuralarray, statistic = "CC")
AverageShortestPathLength <- neuralstat(filteredneuralarray, statistic = "ASPL")
Modularity <- neuralstat(filteredneuralarray, statistic = "Q")
Smallworldness <- neuralstat(filteredneuralarray, statistic = "S")
Trasitivity <- neuralstat(filteredneuralarray, statistic = "transitivity")
Connectivity <- neuralstat(filteredneuralarray, statistic = "conn")
BetweennessCentrality <- neuralstat(filteredneuralarray, statistic = "BC")
ClosenessCentrality <- neuralstat(filteredneuralarray, statistic = "LC")
Degree <- neuralstat(filteredneuralarray, statistic = "deg")
NodeStrength <- neuralstat(filteredneuralarray, statistic = "str")
Communities <- neuralstat(filteredneuralarray, statistic = "comm")
EigenvectorCentrality <- neuralstat(filteredneuralarray, statistic = "EC")
LeverageCentrality <- neuralstat(filteredneuralarray, statistic = "lev")
RandomShortestPathBC <- neuralstat(filteredneuralarray, statistic = "rspbc")
HybridCentrality <- neuralstat(filteredneuralarray, statistic = "hybrid")
NodeImpact <- neuralstat(filteredneuralarray, statistic = "impact")
# }
Run the code above in your browser using DataLab