Applies the Local/Global method to estimate the sparse inverse covariance matrix using a TMFG-filtered network (see and cite Barfuss et al., 2016)
LoGo(data, cliques, separators, partial = FALSE, normal = FALSE,
standardize = FALSE, na.data = c("pairwise", "listwise", "fiml", "none"))
Must be a dataset
Cliques defined in the network. Input can be a list or matrix
Separators defined in the network. Input can be a list or matrix
Should the output network's connections be the partial correlation between two nodes given all other nodes? Defaults to FALSE, which returns a sparse inverse covariance matrix. Set to TRUE for a partial correlation matrix
Should data be transformed to a normal distribution? Defaults to FALSE. Data is not transformed to be normal. Set to TRUE if data should be transformed to be normal (computes correlations using the cor_auto function)
Should inverse covariance matrix be standardized? Defaults to FALSE. Set to TRUE for inverse correlation matrix
Returns the sparse LoGo-filtered inverse covariance matrix (partial = FALSE) or LoGo-filtered partial correlation matrix (partial = TRUE)
Barfuss, W., Massara, G. P., Di Matteo, T., & Aste, T. (2016). Parsimonious modeling with information filtering networks. Physical Review E, 94(6), 062306.
# NOT RUN {
LoGonet<-LoGo(neoOpen, partial = TRUE)
# }
Run the code above in your browser using DataLab