Applies the Triangulated Maximally Filtered Graph (TMFG) filtering method (Please see and cite Massara et al., 2016)
TMFG(data, normal = FALSE, weighted = TRUE, depend = FALSE,
na.data = c("pairwise", "listwise", "fiml", "none"))
Can be a dataset or a correlation matrix
Should data be transformed to a normal distribution? Input must be a dataset. Defaults to FALSE. Data is not transformed to be normal. Set to TRUE if data should be transformed to be normal (computes correlations using the cor_auto function)
Should network be weighted? Defaults to TRUE. Set to FALSE to produce an unweighted (binary) network
Is network a dependency (or directed) network?
Defaults to FALSE.
Set to TRUE to generate a TMFG-filtered dependency network
(output obtained from the depend
function)
Returns a list of the adjacency matrix (A), separators (separators), and cliques (cliques)
Christensen, A. P., Kenett, Y. N., Aste, T., Silvia, P. J., & Kwapil, T. R. (2018). Network structure of the Wisconsin Schizotypy Scales-Short Forms: Examining psychometric network filtering approaches. Behavior Research Methods, 1-20, doi:10.3758/s13428-018-1032-9
Massara, G. P., Di Matteo, T., & Aste, T. (2016). Network filtering for big data: Triangulated maximally filtered graph. Journal of Complex Networks, 5(2), 161-178.
# NOT RUN {
weighted_TMFGnetwork<-TMFG(neoOpen)
unweighted_TMFGnetwork<-TMFG(neoOpen,weighted=FALSE)
# }
Run the code above in your browser using DataLab