Learn R Programming

NetworkToolbox (version 1.1.2)

cpmFP: Connectome-based Predictive Modeling--Fingerprinting

Description

Applies the Connectome-based Predictive Modeling approach to neural data. This method identifies individuals based on their specific connectivity patterns. Please cite Finn et al., 2015; Rosenberg et al., 2016; Shen et al., 2017

Usage

cpmFP(session1, session2, progBar = TRUE)

Arguments

session1

Array from convertConnBrainMat function (first session)

session2

Array from convertConnBrainMat function (second session)

progBar

Should progress bar be displayed? Defaults to TRUE. Set to FALSE for no progress bar

Value

Returns a matrix containing the percentage and number of correctly identified subjects for sessions 1 and 2

References

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664-1671.

Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X., Constable, R. T., Chun, M. M. (2016). A neuromarker of sustained attention from whole-brain functional connectivity. Nature Neuroscience, 19(1), 165-171.

Shen, X. Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506-518.