
Last chance! 50% off unlimited learning
Sale ends in
Bootstraps (without replacement) the nodes in the network and computes global network characteristics
semnetboot(data, method = c("TMFG", "LoGo", "MaST", "threshold"),
normal = FALSE, nodes, iter = 1000, na.data = c("pairwise", "listwise",
"fiml", "none"), ...)
A set of data
A network filtering method. Defaults to "TMFG"
Should data be transformed to a normal distribution? Defaults to FALSE. Data is not transformed to be normal. Set to TRUE if data should be transformed to be normal (computes correlations using the cor_auto function)
Number of nodes (i.e., variables) to use in the bootstrap. Defaults to 50 Otherwise accepts the number of the nodes to be included
Number of bootstrap iterations. Defaults to 1000 iterations
Additional arguments for filtering methods
Returns a list that includes the original semantic network measures (origmeas; ASPL, CC, Q, S), and the bootstrapped semantic network measures (bootmeas)
Kenett, Y. N., Wechsler-Kashi, D., Kenett, D. Y., Schwartz, R. G., Ben Jacob, E., & Faust, M. (2013). Semantic organization in children with cochlear implants: Computational analysis of verbal fluency. Frontiers in Psychology, 4(543), 1-11.
# NOT RUN {
lowO <- subset(animals, Group==1)[-1]
semTMFG<-semnetboot(lowO)
semLoGo<-semnetboot(lowO,method="LoGo")
semMaST<-semnetboot(lowO,method="MaST")
semThreshold<-semnetboot(lowO,method="threshold")
# }
Run the code above in your browser using DataLab