x <- seq(0.1, 10, 0.2)
dinv.pow.cauchy(x, 2.0, 5.0)
pinv.pow.cauchy(x, 2.0, 5.0)
qinv.pow.cauchy(0.5, 2.0, 5.0)
rinv.pow.cauchy(10, 2.0, 5.0)
hinv.pow.cauchy(x, 2.0, 5.0)
# Data
x <- headneck44
# ML estimates
params = list(alpha=1.4271, lambda=123.5294)
#P–P (probability–probability) plot
pp.plot(x, params = params, pfun = pinv.pow.cauchy, fit.line=TRUE)
#Q-Q (quantile–quantile) plot
qq.plot(x, params = params, qfun = qinv.pow.cauchy, fit.line=TRUE)
# Goodness-of-Fit(GoF) and Model Diagnostics
res <- gofic(x, params = params,
dfun = dinv.pow.cauchy, pfun=pinv.pow.cauchy, plot=FALSE)
print.gofic(res)
Run the code above in your browser using DataLab