Learn R Programming

NeuDist (version 1.0.1)

LindleyChen: Lindley-Chen Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Lindley-Chen distribution.

Usage

dlindley.chen(x, alpha, lambda, theta, log = FALSE)
plindley.chen(q, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
qlindley.chen(p, alpha, lambda, theta, lower.tail = TRUE, log.p = FALSE)
rlindley.chen(n, alpha, lambda, theta)
hlindley.chen(x, alpha, lambda, theta)

Value

  • dlindley.chen: numeric vector of (log-)densities

  • plindley.chen: numeric vector of probabilities

  • qlindley.chen: numeric vector of quantiles

  • rlindley.chen: numeric vector of random variates

  • hlindley.chen: numeric vector of hazard values

Arguments

x, q

numeric vector of quantiles (x, q)

alpha

positive numeric parameter

lambda

positive numeric parameter

theta

positive numeric parameter

log

logical; if TRUE, returns log-density

lower.tail

logical; if TRUE (default), probabilities are \(P[X \le x]\) otherwise, \(P[X > x]\).

log.p

logical; if TRUE, probabilities are given as log(p)

p

numeric vector of probabilities (0 < p < 1)

n

number of observations (integer > 0)

Details

The Lindley-Chen distribution is parameterized by the parameters \(\alpha > 0\), \(\lambda > 0\), and \(\theta > 0\).

The Lindley-Chen distribution has CDF:

$$ F(x; \alpha, \lambda, \theta) = 1 - \left[ {1 - \lambda \left( {\frac{\theta }{{1 + \theta }}} \right) \left( {1 - {e^{{x^\alpha }}}} \right)} \right]\; \exp \left\{ {\lambda \theta \left( {1 - {e^{{x^\alpha }}}} \right)} \right\}, \quad x > 0. $$

where \(\alpha\), \(\lambda\), and \(\theta\) are the parameters.

The functions available are listed below:

  • dlindley.chen() — Density function

  • plindley.chen() — Distribution function

  • qlindley.chen() — Quantile function

  • rlindley.chen() — Random generation

  • hlindley.chen() — Hazard function

References

Bhati, D., Malik, M. A., & Vaman, H. J. (2015). Lindley–Exponential distribution: properties and applications. Metron, 73(3), 335--357.

Joshi, R. K., & Kumar, V. (2020). Lindley-Chen Distribution with Applications. International Journal of Engineering, Science & Mathematics (IJESM), 9(10), 12--22.

Examples

Run this code
x <- seq(1.0, 3.0, 0.25)
dlindley.chen(x, 0.5, 2, 0.5)
plindley.chen(x, 0.5, 2, 0.5)
qlindley.chen(0.5, 0.5, 2, 0.5)
rlindley.chen(10, 0.5, 2, 0.5)
hlindley.chen(x, 0.5, 2, 0.5)

# Data
x <- fibers65
# ML estimates
params = list(alpha=1.26813, lambda=28.96389, theta=0.00355)
#P–P (probability–probability) plot
pp.plot(x, params = params, pfun = plindley.chen, fit.line=TRUE)

#Q-Q (quantile–quantile) plot 
qq.plot(x, params = params, qfun = qlindley.chen, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics 
out <- gofic(x, params = params,
             dfun = dlindley.chen, pfun=plindley.chen, plot=FALSE)
print.gofic(out)

Run the code above in your browser using DataLab