x <- seq(0.1, 1, 0.1)
dlindley.inv.weib(x, 1.5, 2.0, 0.5)
plindley.inv.weib(x, 1.5, 2.0, 0.5)
qlindley.inv.weib(0.5, 2.0, 5.0, 0.1)
rlindley.inv.weib(10, 1.5, 2.0, 0.5)
hlindley.inv.weib(x, 1.5, 2.0, 0.5)
# Data
x <- waiting
# ML estimates
params = list(alpha=9.3340, beta=0.3010, theta=104.4248)
#P–P (probability–probability) plot
pp.plot(x, params = params, pfun = plindley.inv.weib, fit.line=TRUE)
#Q-Q (quantile–quantile) plot
qq.plot(x, params = params, qfun = qlindley.inv.weib, fit.line=FALSE)
# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,
dfun = dlindley.inv.weib, pfun=plindley.inv.weib, plot=FALSE)
print.gofic(out)
Run the code above in your browser using DataLab