x <- seq(0.1, 10, 0.2)
dlogis.inv.lomax(x, 2.0, 5.0, 0.2)
plogis.inv.lomax(x, 2.0, 5.0, 0.2)
qlogis.inv.lomax(0.5, 2.0, 5.0, 0.2)
rlogis.inv.lomax(10, 2.0, 5.0, 0.2)
hlogis.inv.lomax(x, 2.0, 5.0, 0.2)
# Data
x <- bladder
# ML estimates
params = list(alpha=2.87951, beta=38.51405, lambda=0.35313)
#P–P (probability–probability) plot
pp.plot(x, params = params, pfun = plogis.inv.lomax, fit.line=TRUE)
#Q-Q (quantile–quantile) plot
qq.plot(x, params = params, qfun = qlogis.inv.lomax, fit.line=TRUE)
# Goodness-of-Fit(GoF) and Model Diagnostics
out <- gofic(x, params = params,
dfun = dlogis.inv.lomax, pfun=plogis.inv.lomax, plot=FALSE)
print.gofic(out)
Run the code above in your browser using DataLab