Learn R Programming

NeuDist (version 1.0.1)

ModInvLomax: Modified Inverse Lomax (MIL) Distribution

Description

Provides density, distribution, quantile, random generation, and hazard functions for the Modified Inverse Lomax distribution.

Usage

dmod.inv.lomax(x, alpha, beta, lambda, log = FALSE)
pmod.inv.lomax(q, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
qmod.inv.lomax(p, alpha, beta, lambda, lower.tail = TRUE, log.p = FALSE)
rmod.inv.lomax(n, alpha, beta, lambda)
hmod.inv.lomax(x, alpha, beta, lambda)

Value

  • dmod.inv.lomax: numeric vector of (log) densities.

  • pmod.inv.lomax: numeric vector of distribution function values.

  • qmod.inv.lomax: numeric vector of quantiles.

  • rmod.inv.lomax: numeric vector of random variates.

  • hmod.inv.lomax: numeric vector of hazard rates.

Arguments

x

numeric vector of strictly positive quantiles.

alpha

positive shape parameter.

beta

positive scale parameter.

lambda

positive shape/scale parameter.

log

logical; if TRUE, returns the log-density.

q

numeric vector of strictly positive quantiles.

lower.tail

logical; if TRUE (default), probabilities are \(P(X \le x)\), otherwise \(P(X > x)\).

log.p

logical; if TRUE, probabilities are returned as log(p).

p

numeric vector of probabilities with values in (0, 1).

n

number of observations (positive integer).

Details

The distribution is parameterized by shape parameters \(\alpha > 0\), \(\beta > 0\) and scale/shape parameter \(\lambda > 0\).

The cumulative distribution function (CDF) of the MIL distribution is

$$ F(x; \alpha,\beta,\lambda) = \left[1+\left(\frac{\beta}{x}\right)e^{-\lambda x}\right]^{-\alpha}, \quad x>0. $$

References

Telee, L.B.S., Yadav, R.S., & Kumar V.(2023). Modified Inverse Lomax Distribution: Model and properties. Discovery, 59: e110d1352. tools:::Rd_expr_doi("10.54905/disssi.v59i333.e110d1352")

Examples

Run this code
x <- seq(0.1, 5, by = 0.1)
dmod.inv.lomax(x, alpha = 1.5, beta = 2, lambda = 0.5)
pmod.inv.lomax(x, alpha = 1.5, beta = 2, lambda = 0.5)
qmod.inv.lomax(0.5, alpha = 1.5, beta = 2, lambda = 0.5)
set.seed(123)
rmod.inv.lomax(5, alpha = 1.5, beta = 2, lambda = 0.5)
hmod.inv.lomax(x, alpha = 1.5, beta = 2, lambda = 0.5)

# Data
x <- windshield
# ML estimates
params = list(alpha=0.6661, beta=26.8875, lambda=1.0004)
#P–P (probability–probability) plot
pp.plot(x, params = params, pfun = pmod.inv.lomax, fit.line=TRUE)

#Q-Q (quantile–quantile) plot 
qq.plot(x, params = params, qfun = qmod.inv.lomax, fit.line=TRUE)

# Goodness-of-Fit(GoF) and Model Diagnostics 
out <- gofic(x, params = params,
             dfun = dmod.inv.lomax, pfun=pmod.inv.lomax, plot=FALSE)
print.gofic(out)

Run the code above in your browser using DataLab