assess a neural estimator
assess(
estimators,
parameters,
Z,
estimator_names = NULL,
parameter_names = NULL,
use_gpu = TRUE,
verbose = TRUE
)
a list of two data frames: runtimes
, contains the
total time taken for each estimator, while estimates
is a long-form
data frame with columns:
"estimator"; the name of the estimator
"parameter"; the name of the parameter
"truth"; the true value of the parameter
"estimate"; the estimated value of the parameter
"m"; the sample size (number of iid replicates)
"k"; the index of the parameter vector in the test set
"j"; the index of the data set
a list of (neural) estimators
true parameters, stored as a pxK matrix, where p is the number of parameters in the statistical model and K is the number of sampled parameter vectors
data simulated conditionally on the parameters
. If Z
contains more data sets than parameter vectors, the parameter matrix will be recycled by horizontal concatenation.
list of names of the estimators (sensible defaults provided)
list of names of the parameters (sensible defaults provided)
a boolean indicating whether to use the GPU if it is available (default true)
a boolean indicating whether information should be printed to the console
risk()
, rmse()
, bias()
, plotestimates()
, and plotdistribution()
for computing various empirical diagnostics and visualisations based on an assessment object