Learn R Programming

NeuralEstimators (version 0.1.3)

mlestimate: Maximum likelihood estimation

Description

Given data Z and a neural likelihood-to-evidence-ratio estimator, computes the implied approximate maximum-likelihood estimate

If a vector theta0 of initial parameter estimates is given, the approximate likelihood is maximised by gradient descent. Otherwise, if a matrix of parameters theta_grid is given, the approximate likelihood is maximised by grid search.

Usage

mlestimate(estimator, Z, theta_grid = NULL, theta0 = NULL, use_gpu = TRUE)

Value

a p × K matrix of maximum-likelihood estimates, where p is the number of parameters in the statistical model and K is the number of data sets provided in Z

Arguments

estimator

a neural likelihood-to-evidence-ratio estimator

Z

data; it's format should be amenable to the architecture of estimator

theta_grid

a (fine) gridding of the parameter space, given as a matrix with p rows, where p is the number of parameters in the model

theta0

a vector of initial parameter estimates

use_gpu

a boolean indicating whether to use the GPU if it is available (default true)

See Also

sampleposterior(), mapestimate()