Computes the (approximate) posterior mode (maximum a posteriori estimate) given data Z.
posteriormode(estimator, Z, ...)a d × K matrix of posterior samples, where d is the dimension of the parameter vector and K is the number of data sets provided in Z
a neural posterior or likelihood-to-evidence-ratio estimator
data in a format amenable to the neural-network architecture of estimator
additional keyword arguments passed to the Julia version of posteriormode()
sampleposterior() for sampling from the approximate posterior distribution