Samples from the approximate posterior distribution given data Z
.
sampleposterior(estimator, Z, N = 1000, ...)
a d × N
matrix of posterior samples, where d is the dimension of the parameter vector. If Z
is a list containing multiple data sets, a list of matrices will be returned
a neural posterior or likelihood-to-evidence-ratio estimator
data in a format amenable to the neural-network architecture of estimator
number of approximate posterior samples to draw
additional keyword arguments passed to the Julia version of sampleposterior()
, applicable when estimator
is a likelihood-to-evidence-ratio estimator
estimate()
for making inference with neural Bayes estimators