Usage
plotnet(mod_in, ...)
## S3 method for class 'nnet':
plotnet(mod_in, nid = TRUE, all_out = TRUE, all_in = TRUE,
bias = TRUE, wts_only = FALSE, rel_rsc = 5, circle_cex = 5,
node_labs = TRUE, var_labs = TRUE, x_lab = NULL, y_lab = NULL,
line_stag = NULL, cex_val = 1, alpha_val = 1,
circle_col = "lightblue", pos_col = "black", neg_col = "grey",
bord_col = "lightblue", max_sp = FALSE, ...)
## S3 method for class 'numeric':
plotnet(mod_in, struct, nid = TRUE, all_out = TRUE,
all_in = TRUE, bias = TRUE, wts_only = FALSE, rel_rsc = 5,
circle_cex = 5, node_labs = TRUE, var_labs = TRUE, x_lab = NULL,
y_lab = NULL, line_stag = NULL, cex_val = 1, alpha_val = 1,
circle_col = "lightblue", pos_col = "black", neg_col = "grey",
bord_col = "lightblue", max_sp = FALSE, ...)
## S3 method for class 'mlp':
plotnet(mod_in, nid = TRUE, all_out = TRUE, all_in = TRUE,
wts_only = FALSE, rel_rsc = 5, circle_cex = 5, node_labs = TRUE,
var_labs = TRUE, x_lab = NULL, y_lab = NULL, line_stag = NULL,
cex_val = 1, alpha_val = 1, circle_col = "lightblue",
pos_col = "black", neg_col = "grey", bord_col = "lightblue",
max_sp = FALSE, ...)
## S3 method for class 'nn':
plotnet(mod_in, nid = TRUE, all_out = TRUE, all_in = TRUE,
bias = TRUE, wts_only = FALSE, rel_rsc = 5, circle_cex = 5,
node_labs = TRUE, var_labs = TRUE, x_lab = NULL, y_lab = NULL,
line_stag = NULL, cex_val = 1, alpha_val = 1,
circle_col = "lightblue", pos_col = "black", neg_col = "grey",
bord_col = "lightblue", max_sp = FALSE, ...)
## S3 method for class 'train':
plotnet(mod_in, nid = TRUE, all_out = TRUE, all_in = TRUE,
bias = TRUE, wts_only = FALSE, rel_rsc = 5, circle_cex = 5,
node_labs = TRUE, var_labs = TRUE, x_lab = NULL, y_lab = NULL,
line_stag = NULL, cex_val = 1, alpha_val = 1,
circle_col = "lightblue", pos_col = "black", neg_col = "grey",
bord_col = "lightblue", max_sp = FALSE, ...)
Arguments
mod_in
neural network object or numeric vector of weights
...
additional arguments passed to plot
nid
logical value indicating if neural interpretation diagram is plotted, default TRUE
all_out
chr string indicating names of response variables for which connections are plotted, default all
all_in
chr string indicating names of input variables for which connections are plotted, default all
bias
logical value indicating if bias nodes and connections are plotted, not applicable for networks from mlp function, default TRUE wts_only
logical value indicating if connections weights are returned rather than a plot, default FALSE
rel_rsc
numeric value indicating maximum width of connection lines, default 5
circle_cex
numeric value indicating size of nodes, default 5
node_labs
logical value indicating if labels are plotted directly on nodes, default TRUE
var_labs
logical value indicating if variable names are plotted next to nodes, default TRUE
x_lab
chr string indicating names for input variables, default from model object
y_lab
chr string indicating names for output variables, default from model object
line_stag
numeric value that specifies distance of connection weights from nodes
cex_val
numeric value indicating size of text labels, default 1
alpha_val
numeric value (0-1) indicating transparency of connections, default 1
circle_col
chr string indicating color of nodes, default 'lightblue', or two element list with first element indicating color of input nodes and second indicating color of remaining nodes
pos_col
chr string indicating color of positive connection weights, default 'black'
neg_col
chr string indicating color of negative connection weights, default 'grey'
bord_col
chr string indicating border color around nodes, default 'lightblue'
max_sp
logical value indicating if space between nodes in each layer is maximized, default FALSE
struct
numeric vector equal in length to the number of layers in the network. Each number indicates the number of nodes in each layer starting with the input and ending with the output. An arbitrary number of hidden layers can be included.