Learn R Programming

Newdistns (version 1.0)

gammag: Gamma uniform G distribution

Description

Computes the pdf, cdf, quantile and random numbers of the gamma uniform G distribution due to Torabi and Montazeri (2012) specified by the pdf $$f (x) = \frac {1}{\Gamma (a)} \frac {g (x)}{\left[ 1 - G (x) \right]^2} \left[ \frac {G (x)}{1 - G (x)} \right]^{a - 1} \exp \left[ -\frac {G (x)}{1 - G (x)} \right]$$ for $G$ any valid cdf, $g$ the corresponding pdf, and $a > 0$, the first shape parameter.

Usage

dgammag(x, spec, a = 1, log = FALSE, ...)
pgammag(x, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...)
qgammag(p, spec, a = 1, log.p = FALSE, lower.tail = TRUE, ...)
rgammag(n, spec, a = 1, ...)

Arguments

x
scaler or vector of values at which the pdf or cdf needs to be computed
p
scaler or vector of values at which the quantile needs to be computed
n
number of random numbers to be generated
a
the value of the shape parameter, must be positive, the default is 1
spec
a character string specifying the distribution of G and g (for example, "norm" if G and g correspond to the standard normal).
log
if TRUE then log(pdf) are returned
log.p
if TRUE then log(cdf) are returned and quantiles are computed for exp(p)
lower.tail
if FALSE then 1-cdf are returned and quantiles are computed for 1-p
...
other parameters

Value

  • An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the quantile values computed at p or an object of the same length as n, giving the random numbers generated.

References

S. Nadarajah, Newdistns: An R Package for new families of distributions, submitted H. Torabi, N. H. Montazeri, The gamma uniform distribution and its applications, Kybernetika 48 (2012) 16-30

Examples

Run this code
x=runif(10,min=0,max=1)
dgammag(x,"exp",a=1)
pgammag(x,"exp",a=1)
qgammag(x,"exp",a=1)
rgammag(10,"exp",a=1)

Run the code above in your browser using DataLab