Learn R Programming

NominalLogisticBiplot (version 0.2)

RidgeMultinomialRegression: Ridge Multinomial Logistic Regression

Description

Function that calculates an object with the fitted multinomial logistic regression for a nominal variable. It compares with the null model, so that we will be able to compare which model fits better the variable.

Usage

RidgeMultinomialRegression(y, x, penalization = 0.2, cte = TRUE, tol = 1e-04, maxiter = 200, showIter = FALSE)

Arguments

y
Dependent variable.
x
A matrix with the independent variables.
penalization
Penalization used in the diagonal matrix to avoid singularities.
cte
Should the model have a constant?
tol
Value to stop the process of iterations.
maxiter
Maximum number of iterations.
showIter
Should the iteration history be printed?.

Value

An object that has the following components:
fitted
Matrix with the fitted probabilities
cov
Covariance matrix among the estimates
Y
Indicator matrix for the dependent variable
beta
Estimated coefficients for the multinomial logistic regression
stderr
Standard error of the estimates
logLik
Logarithm of the likelihood
Deviance
Deviance of the model
AIC
Akaike information criterion indicator
BIC
Bayesian information criterion indicator
NullDeviance
Deviance of the null model
Difference
Difference between the two deviance values
df
Degrees of freedom
p
p-value asociated to the chi-squared estimate
CoxSnell
Cox and Snell pseudo R squared
Nagelkerke
Nagelkerke pseudo R squared
MacFaden
MacFaden pseudo R squared
PercentCorrect
Percentage of correct classifications

References

Albert,A. & Anderson,J.A. (1984),On the existence of maximum likelihood estimates in logistic regression models, Biometrika 71(1), 1--10. Bull, S.B., Mak, C. & Greenwood, C.M. (2002), A modified score function for multinomial logistic regression, Computational Statistics and dada Analysis 39, 57--74. Firth, D.(1993), Bias reduction of maximum likelihood estimates, Biometrika 80(1), 27--38 Heinze, G. & Schemper, M. (2002), A solution to the problem of separation in logistic regression, Statistics in Medicine 21, 2109--2419 Le Cessie, S. & Van Houwelingen, J. (1992), Ridge estimators in logistic regression, Applied Statistics 41(1), 191--201.

See Also

polylogist

Examples

Run this code
  
  data(HairColor)
  data = data.matrix(HairColor)
  G = NominalMatrix2Binary(data)
  mca=afc(G,dim=2)
  depVar = data[,1]
  rmr = RidgeMultinomialRegression(depVar,mca$RowCoordinates[,1:2],penalization=0.1)
  rmr
  

Run the code above in your browser using DataLab