polylogist(y, x, penalization = 0.2, cte = TRUE, tol = 1e-04, maxiter = 200, show = FALSE)
"polylogist"
. This has componentsRather than maximizing $L_j (G | b_j0 , B_j)$ we maximize
$${{L_j}(\left. {\bf{G}} \right|{{\bf{b}}_{j0}},{{\bf{B}}_j})} - \lambda \left( {\left\| {{{\bf{b}}_{j0}}} \right\| + \left\| {{{\bf{B}}_j}} \right\|} \right)$$ Changing the values of $\lambda$ we obtain slightly different solutions not affected by the separation problem.
data(HairColor)
data = data.matrix(HairColor)
G = NominalMatrix2Binary(data)
mca=afc(G,dim=2)
depVar = data[,1]
nomreg = polylogist(depVar,mca$RowCoordinates[,1:2],penalization=0.1)
nomreg
Run the code above in your browser using DataLab